### Dual Switch Converter with Passive Lossless Clamping for High Step up Voltage Gain

#### Abstract

A dual switch converter with passive lossless clamping is used to obtain high step-up voltage gain is proposed. The proposed converter outputs larger voltage than the input voltage by using an improved dual switch converter. The maximum output voltage is obtained by high voltage conversion ratio of the dual switch converter with passive lossless clamping. The conventional dc-dc boost converters are unable to provide high step-up voltage gain due to the effect of power switches, rectifier diodes and the equivalent series resistance of capacitors and inductors. The improved dual switch converter can achieve high voltage gain with a condition that the parameters are inconsistent. The proposed converter has an advantage of low voltage and current stress on the switches compared to the transformer less dc-dc converters. The proposed converter also provides the solution to balance the voltage across the switches and to suppress the resonance. This is possible due to the presence of passive lossless clamping. The simulation of the circuit with 24V input, 100V/0.1A output is done using MATLAB software. The simulation results indicate an improved voltage waveform with high step up voltage gain.

#### Keywords

#### Full Text:

PDF#### References

B.Bryant and M. K. Kazimierczuk, “Voltage- loop power-stage transfer functions with MOSFET delay for boost PWM converter operating in CCM,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 347–353, Feb. 2007.

X. Wu, J. Zhang, X. Ye, and Z. Qian, “Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 773–781, Feb. 2008.

D.C.Lu, K. W. Cheng, and Y. S. Lee, “A single-switch continuous conduction- mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 767–776, Aug. 2003.

B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched coupled-inductor cell for DC–DC converters with very large conversion ratio,” in Proc. IEEE IECON, 2011, pp. 2366–2371.

A. K. Rathore, A. K. S. Bhat, and R. Oruganti, “Analysis, design and experimental results of wide range ZVS active-clamped L-L type currentfed DC/DC converter for fuel cells to utility interface,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 473–485, Jan. 2012

U. R. Prasanna and A. K. Rathore, “Small signal analysis and control design of current-fed full-bridge isolated dc/dc converter with activeclamp,” in Proc. IEEE ISIE, 2012, pp. 509–514.

S. K. Ki and D. D. Lu, “A high step-down transformerless single-stage single-switch AC/DC converter,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 36–45, Jan. 2013

Y. Zhou, D. E. Macpherson, W. Blewitt, and D. Jovcic, “Comparison of DC–DC converter topologies for offshore wind-farm application,” in Proc. 6th IET Int. Conf. PEMD, 2012, pp. 1–6

S. R. Jang, H. J. Ryoo, S. H. Ahn, J. Kim, and G. H. Rim, “Development and optimization of high-voltage power supply system for industrial magnetron,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1453–1461, Mar. 2012.

Z. W. Ouyang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design and tradeoff analysis of planar transformer in high-power DC–DC converters,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2800–2810, Jul. 2012.

D. Chatterjee, “A simple leakage inductance identification technique for three-phase induction machines under variable flux condition,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4041–4048, Nov. 2012.

B. R. Lin and J. J. Chen, “Analysis and implementation of a soft switching Converter with high-voltage conversion ratio,” Proc. IET-Power Electron, vol. 1, no. 3, pp. 386–394, Sep. 2008.

R. Caro, J. M. Ramirez, and P. M. Garcia-Vite, “Novel DC–DC multilevel boost converter,” in Proc. IEEE PESC, 2008, pp. 2146–2151.

Y. M. Ye and K. W. E. Cheng, “A family of single-stage switchedcapacitor–inductor PWM converters,” IEEE Trans. Power Electron, vol. 28, no. 11, pp. 5196–5205, Nov. 2013.

O. A. Rahim, M. Orabi, E. Abdelkarim, M. Ahmed, and M. Z. Youssef,“Switched inductor boost converter for PV applications,” in Proc. IEEE APEC, 2012, pp. 2100–2106

H. S. H. Chung, W. C. Chow, S. Y. R. Hui, and S. T. S. Lee, “Development of a switched-capacitor DC–DC converter with bidirectional power flow,” IEEE Trans. Circuits Syst. I, Fund. Theory Appl., vol. 47, no. 9, pp. 1383–1389, Sep. 2000

M. N. Gitau and C. L. K. Konga, “Multilevel switched-capacitor DC–DC converter with reduced capacitor bank,” in Proc. IEEE IECON, 2010 pp. 576–581.

D. H. Kim, S. Moon, C. I. Kim, and J. H. Park, “Series-connected isolated-switched-capacitor boost converter,” in Proc. IEEE IPEMC, 2012, pp. 1343–1346.

Y. Hinago and H. Koizumi, “A switched-capacitor inverter using series/ parallel conversion with inductive load,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 878–887, Feb. 2012.

L. H. Barreto, E. A. Coelho, V. J. Farias, J. C. de Oliveira, L. C. de Freitas, and J. B. Vieira, “A Single-Switch High Gain Quadratic Boost Converter Based on Voltage-Lift-Technique,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 552–557,Apr. 2006.

K. C. Tseng and C. C. Huang, “High step-up, high efficiency interleaved converter with voltage multiplier module for renewable energy system,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1311–1319, Mar. 2014.

M. Mousa, M. Ahmed, and M. Orabi, “A switched inductor multilevel boost converter,” in Proc. IEEE PECon, 2010, pp. 819–823.

M. S. B. Ranjana, N. SreeramulaReddy, and R. K. P. Kumar, “A novel non-isolated switched inductor floating output DC–DC multilevel boost converter for fuel cell applications,” in Proc. IEEE SCEECS, 2014, pp. 1–5.

L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC–DC converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.

Yu Tang,and Ting Wang “Study of An Improved Dual-Switch Converter With Passive Lossless Clamping,”IEEE Trans. Ind. Electron, vol.62, no.2, Feb. 201.

DOI: http://dx.doi.org/10.36039/AA082016003.

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.