Open Access Open Access  Restricted Access Subscription or Fee Access

Android Based Fail Safe Dual Chamber Cardiac Integrated Pacemaker Device

N. Ramesh Kumar, D. Yasar Arfath

Abstract


In this paper, the structure and design of a microspiral-shaped piezoelectric energy harvester and it is related with microfabricated packaging that gathers energy from ordinary blood pressure variations in the cardiac environment. This device is used to for small scale reproduction of energy sources for active implantable medical devices such as leadless pacemakers. The prototype of 10μm thin and ultra-flexible electrodeposited microbellows is proposed as a new type of implant packaging. It enables direct blood pressure harvesting and allows a high efficiency of energy transfer to a transducer operating in quasi-static mode and therefore flexible and impassive by frequent heartbeat frequency changes. Spiral-shaped piezoelectric transducers are presented for their flexibility and large incoming mechanical energy. Non-trivial optimal electrodes placement and best spiral design parameters are studied and discussed. By implementing smart adapted electronic circuits, a potential additional tenfold increase in power output could be achieved, which would be sufficient to power a leadless pacemaker.

Keywords


Flexible Packaging, Energy Harvesting, Piezoelectric Spiral, Blood Pressure, Medical Device, Cardiac Implant, Leadless Pacemaker.

Full Text:

PDF

References


K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, “Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems,” Smart Mater. Struct., vol. 17, no. 4, pp. 043001-1–043001-33, 2008.

S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystems applications,” Meas. Sci. Technol., vol. 17, no. 12, pp. R175–R195, 2006.

P. Mitcheson, E. Yeatman, G. Rao, A. Holmes, and T. Green, “Energy harvesting from human and machine motion for wireless electronic devices,” Proc. IEEE, vol. 96, no. 9, pp. 1457–1486, Sep. 2008.

A. Harb, “Energy harvesting: State-of-the-art,” Renew. Energy, vol. 36, no. 10, pp. 2641–2654, 2011.

T. Starner and J. A. Paradiso, Low-Power Electronics Design (Computer Engineering). Boca Raton, FL, USA: CRC Press, 2004, ch. 45.

S. Roundy, “On the effectiveness of vibration-based energy harvesting,” J. Intell. Mater. Syst. Struct., vol. 16, no. 10, pp. 809–823, 2005.

H. Goto, T. Sugiura, Y. Harada, and T. Kazui, “Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source,” Med. Biol. Eng. Comput., vol. 37, no. 3, pp. 377–380, 1999.

R. Tashiro, N. Kabei, K. Katayama, E. Tsuboi, and K. Tsuchiya, “Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion,” J. Artif. Organs, vol. 5, no. 4, pp. 0239–0245, 2002.

M. A. Karami and D. J. Inman, “Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters,” Appl. Phys. Lett., vol. 100, no. 4, pp. 042901-1–042901-4, 2012.

J. W. Spickler, N. S. Rasor, P. Kezdi, S. Misra, K. Robins, and C. LeBoeuf, “Totally self-contained intracardiac pacemaker,” J. Electrocardiol., vol. 3, nos. 3–4, pp. 325–331, 1970.

P. Vardas, “Leadless pacing,” presented at the EHRA EUROPACE, Jun. 2011.

K.-H. Kuck, “Leadless pacemakers and subcutaneous ICDs: Will we use them for most of our patients?” presented at the Eur. Soc. Cardiology,Aug. 2012.

M. Deterre, R. D. Molin, S. Boisseau, J.-J. Chaillout, E. Lefeuvre, and E. Dufour-Gergam, “Energy harvesting system for cardiac implant applications,” in Proc. Symp. DTIP MEMS/MOEMS, 2011, pp. 387–391.

S. Boisseau, J. Chaillout, M. Deterre, and R. D. Molin, “Toward pacemakers powered by heartbeats,” EE Times, Oct. 2012. [Online]. Available: http://www.eetimes.com/document.asp?doc_id=1280031

N. Shenck and J. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro, vol. 21, no. 3, pp. 30–42, May/Jun. 2001.

M. Pozzi and M. Zhu, “Plucked piezoelectric bimorphs for knee-joint energy harvesting: Modelling and experimental validation,” Smart Mater. Struct., vol. 20, no. 5, pp. 055007-1–055007-10, 2011.

N. Heidrich, F. Knöbber, V. Polyakov, V. Cimalla, W. Pletschen, R. E. Sah, L. Kirste, S. Leopold, S. Hampl, O. Ambacher, and V. Lebedev, “Corrugated piezoelectric membranes for energy harvesting from aperiodic vibrations,” Sens. Actuators A, Phys., vol. 195, pp. 32–37, Jun. 2013.

A. Pfenniger, L. N. Wickramarathna, R. Vogel, and V. M. Koch, “Design and realization of an energy harvester using pulsating arterial pressure,” Med. Eng. Phys., vol. 35, no. 9, pp. 1256–1265, 2013.

M. J. Ramsay and W. W. Clark, “Piezoelectric energy harvesting for bio-MEMS applications,” Proc. SPIE, vol. 429, no. 1, pp. 429–438, 2001.

W. Clark and C. Mo, Energy Harvesting Technologies. New York, NY, USA: Springer-Verlag, 2009, ch. 16, pp. 405–430.

M. Deterre, E. Lefeuvre, and E. Dufour-Gergam, “An active piezoelectric energy extraction method for pressure energy harvesting,” Smart Mater. Struct., vol. 21, no. 8, pp. 085004-1–085004-9, 2012.

M. Deterre, E. Lefeuvre, Y. Zhu, M. Woytasik, A. Bosseboeuf, B. Boutaud, and R. D. Molin, “Micromachined piezoelectric spirals and ultra-compliant packaging for blood pressure energy harvesters powering medical implants,” in Proc. IEEE MEMS Conf., Jan. 2013, pp. 249–252.

W. Choi, Y. Jeon, J.-H. Jeong, R. Sood, and S. Kim, “Energy harvesting MEMS device based on thin film piezoelectric cantilevers,” J. Electroceram., vol. 17, nos. 2–4, pp. 543–548, 2006.

M. Marzencki, “Conception de microgénérateurs intégrés pour systèmes sur puce autonomes,” Ph.D. dissertation, Dept. Micro Nano-électronique, Univ. Joseph-Fourier, Saint-Martin-d’Hères, France, 2007.

T. Galchev, E. Aktakka, and K. Najafi, “A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations,” J. Microelectromech. Syst., vol. 21, no. 6, pp. 1311–1320, Dec. 2012.

Y. Hu, H. Hu, and J. Yang, “A low frequency piezoelectric power harvester using a spiral-shaped bimorph,” Sci. China Ser. G, Phys., Mech. Astron., vol. 49, no. 6, pp. 649–659, 2006.

M. A. Karami, B. Yardimoglu, and D. J. Inman, “Coupled out of plane vibrations of spiral beams for micro-scale applications,” J. Sound Vib., vol. 329, no. 26, pp. 5584–5599, 2010.

T. Dong, E. Halvorsen, and Z. Yang, “A MEMS-based spiral piezoelectric energy harvester,” in Proc. PowerMEMS, 2008, pp. 77–80.

E. E. Aktakka, H. Kim, and K. Najafi, “Energy scavenging from insect flight,” J. Micromech. Microeng., vol. 21, no. 9, pp. 095016-1–095016-11, 2011.

M. A. Karami and D. J. Inman, “Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting,” J. Vibrat. Acoust., vol. 133, no. 1, pp. 011002-1–011002-10, 2011.

D. Berdy, P. Srisungsitthisunti, B. Jung, X. Xu, J. Rhoads, and D. Peroulis, “Low-frequency meandering piezoelectric vibration energy harvester,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control, vol. 59, no. 5, pp. 846–858, May 2012.


Refbacks

  • There are currently no refbacks.