### Real-Time System for Video Background Subtraction

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

M. Isard and A. Blake, ―Condensation-Conditional density propagation for visual tracking,‖ Int. J. Comput. Vis., vol. 29, pp. 5–28, 1998.

Bregler and J. Malik, ―Tracking people with twists and exponential maps,‖ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Washington, DC, 1998, pp. 8–15.

Agarwal and B. Triggs, ―Learning to track 3D human motion from silhouettes,‖ in Proc. Int. Conf. Mach. Learn., New York, 2004, p. 2.

G. Shakhnarovich, P. Viola, and T. Darrell,―Fast pose estimation with parameter-sensitive hashing,‖ in Proc. IEEE Int. Conf. Comput. Vis., Washington, DC, 2003, pp. 750–757.

R . Poppe, ―Vision-based human motion analysis: An overview,‖ Comput. Vis. Image Understand., vol. 108, no. 1–2, pp. 4–18, 2007.

M. Gavrila, ―The visual analysis of human movement: A survey,‖ Comput. Vis. Image Understand., vol. 73, no. 1, pp. 82–98, 1999.

Q. Shi, L.Wang, L. Cheng, and A. J. Smola, ―Discriminative human action segmentation and recognition using semi-Markov model,‖ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1–8.

J. Kivinen and M. K. Warmuth, ―Exponentiated gradient versus gradient descent for linear predictors,‖ Inf. Comput., vol. 132, no. 1, pp.1–64, Jan. 1997.

N. Cesa-Bianchi, A. Conconi, and C. Gentile, ―On the generalization ability of online learning algorithms,‖ IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2050–2057, Sep. 2004.

C. Wren, A. Azarbayejani, T. Darrell, and A. Pantland, ―Pfinder:realtime tracking of the human body,‖ IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 780–785, Jul. 1997.

N. Friedman and S. Russell, ―Image segmentation in video sequences: A probabilistic approach,‖ in Proc. 13th Conf. Uncertainty Artif. Intell., 1997, pp. 175–181.

K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, ―Wallflower: Principles and practice of background maintenance,‖ in Proc. IEEE Int. Conf. Comput. Vis., 1999.

A. Elgammal, D. Harwood, and L. Davis, ―Non-parametric model for background subtraction,‖ in Proc. Eur. Conf. Comput. Vis., 2000, pp. 751–767

R. Duda and P. Hart, Pattern Classification and Scene Analysis. Hoboken, NJ: Wiley, 1973A. Mittal and N. Paragios, ―Motion-based background subtraction using adaptive kernel density estimation,‖ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2004, pp. 302–309.

V. Mahadevan and N. Vasconcelos, ―Background subtraction in highly dynamic scenes,‖ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2008, pp. 1–6.

J. Zhong and S. Sclaroff, ―Segmenting foreground objects from a dynamic textured background via a robust kalman filter,‖ in IEEE International Conference on Computer Vision, 2003, pp. 255–261.

J. Migdal and W. Grimson, ―Background subtraction using Markov thresholds,‖ in Proc. IEEE Workshop Motion Video Comput., 2005

G. Dalley, J. Migdal, and W. Grimson, ―Background subtraction for temporally irregular dynamic textures,‖ in Proc. IEEE Workshop Appl. Comput. Vis., 2008, pp. 1–7.58–65.

Z. Zivkovic and F. Heijden, ―Recursive unsupervised learning of finite mixture models,‖ IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no.5, pp. 651–656, May 2004.

Lee, ―Effective gaussian mixture learning for video background subtraction,‖ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 827–832, May 2005.

C. Stauffer and W. Grimson, ―Learning patterns of activity using realtime tracking,‖ IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 747–757, Aug. 2000.

Monnet, A. Mittal, N. Paragios, and V. Ramesh, ―Background modeling and subtraction of dynamic scenes,‖ in Proc. IEEE Int. Conf. Comput. Vis., 2003, pp. 1305–1312.

Elgammal, D. Harwood, and L. Davis, ―Non-parametric model for background subtraction,‖ in Proc. Eur. Conf. Comput. Vis., 2000, pp. 751–767.

R. Duda and P. Hart, ― Pattern Classification and Scene Analysis ―. Hoboken, NJ: Wiley, 1973.

Han, D. Comaniciu, Y. Zhu, and L. Davis, ―Incremental density approximation and kernel-based bayesian filtering for object tracking,‖ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2004, pp. 638–644.

Ulges and T. Breuel, ―A local discriminative model for background subtraction,‖ in Proc. Symp. German Assoc. Pattern Recognit., 2008, pp. 507–516

Y. Boykov, O. Veksler, and R. Zabih, ―Fast approximate energy minimization via graph cuts,‖ IEEE Trans. Pattern Anal. Mach. Intell., vol.23, no. 11, pp. 1222–1239, Nov. 2001.

N. Dixit, R. Keriven, and N. Paragios, ―GPU-Cuts: combinatorial optimisation, graphic processing units and adaptive object extraction CERTIS, Ecole Nationale des Ponts et Chaussees, 2005, Tech. Rep.

Goldberg and R. Tarjan, ―A new approach to the maximum flow problem,‖ in Proc. ACM Symp. Theory Comput., 1986, pp. 136–146.

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.