Open Access Open Access  Restricted Access Subscription or Fee Access

Discriminative Approach for Age Invariant Face Recognition Using CNN and SVM

HB Chaitanya Bharadwaj, BS. Avinash, MC. Chethan, G. Darshan, Dr. R. Kanagavalli


Face Recognition across age has been a challenging and popular task in the field of Face Recognition. Although many researchers are contributing to the area, there’s a significant gap to fill in. Data collections and feature extraction are the most challenging tasks to be tackled in Age Invariant Face Recognition (AIFR). Feature extraction could be achieved using the Convolutional Neural Networks (CNN) and for classification. But due to unavailability of large, paired datasets, opting for a Deep Neural Network architecture for this problem statement would not result in a good accuracy. Therefore, we propose a CNN-SVM architecture where CNN extracts important features from an image, which is then used by SVM for final classification.


Age Invariant Face Recognition (AIFR), CNN, SVM, Tensor Flow, Face Detection

Full Text:



Zhifeng L., et al., “A Discriminative Model for Age Invariant Face Recognition,” IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 1028-1037, 2011.

M. Sajid, et al., “The Role of Facial Asymmetry in Recognizing Age-Separated Face Images,” Journal of Computers & Electrical Engineering, pp. 1-12, 2016.

J. M. Guo, et al., “Human Face Age Estimation with Adaptive Hybrid Features,” International Conference on System Science and Engineering, 2011.

Hunter and B. Tiddeman, “Facial Ageing,” Cambridge University Press, 2012.

H. Ling, et al., “Face Verification Across Age Progression Using Discriminative Methods,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 1, pp. 82-91, 2010.

Sun Y., et al., “Deepid3: Face Recognition with Very Deep Neural Networks,” arXiv preprint arXiv: 1502.00873, 2015.

U. Park, et al., “Age-Invariant Face Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 5, pp. 947-954, 2010.

Xiao, et al., “Biview Face Recognition in the Shape- Texture Domain”, Elseview Journal on Pattern Recognition, vol. 46, no. 7, pp. 1906-1919, 2013.

Yang H., et al., “Age Invariant Face Recognition Based on Texture Embedded Discriminative Graph Model”, IEEE International Joint Conference on Biometrics, 2014.

Guosheng H., et al., “When Face Recognition Meets with Deep Learning: an Evaluation of Convolutional Neural Networks for Face Recognition,” arXiv preprint arXiv:1504.02351, pp. 4321-4329, 2015.

The FG-NET Aging Database,


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.