Open Access Open Access  Restricted Access Subscription or Fee Access

Carotid Ultrasound Plaque Classification Using a Combination of Region of Interest, Discrete Wavelet Transform and Neural Networks

P. Aiswariya, Dr. C. Bhuvaneswari

Abstract


Carotid ultrasound plaque classification using a combination of .region of interest, discrete wavelet transform and neural networks are used to classify the symptomatic or asymptomatic ultrasound plaque images. The system involves three steps: 1) the preprocessing step using the ROI technique. 2) The method Feature extraction is done by averaging values and discrete wavelet transform.3) Classification using a Neural Network. In this work Multilayer feed-forward neural network is adapted for training and testing the images. The accuracy of 70% is obtained in proposed work using neural network classifier.

Keywords


Atherosclerosis, Carotid Ultrasound, Classification, Discrete Wavelet Transform (DWT), Region of Interest (ROI) Technique, Neural Network.

Full Text:

PDF

References


. U. Rajendra Acharya, Oliver Faust, S. Vinitha Sree, Filippo Molinari, Luca Saba, Andrew Nicolaides, and Jasjit S. Suri, Senior Member,“An Accurate and Generalized Approach to Plaque Characterization in 346 Carotid Ultrasound Scans”, IEEE transactions on instrumentation and measurement, vol. 61, no. 4, April 2012.

. R. U. Acharya, O. Faust, A. P. Alvin, S. V. Sree, F. Molinari, L. Saba, A. Nicolaides, and J. S. Suri, “Symptomatic vs. asymptomatic plaque classification in carotid ultrasound,” J. Med. Syst., Jan. 18, 2011, DOI: 10.1007/s10916-010-9645-2.

. N. Tsiaparas, S. Golemati, J. Stoitsis, and K. S. Nikita, “Discrete wavelet transform vs. wavelet packets for texture analysis of ultrasound images of carotid atherosclerosis,” in Proc. 9th Int. Conf. Inf. Technol. Appl. Biomed., 2009, pp. 1–4.

. J. Stoitsis, N. Tsiaparas, S. Golemati, and K. S. Nikita, “Characterization of carotid atherosclerotic plaques using frequency-based texture analysis and bootstrap,” in Proc. 28th Annu. Int. Conf. IEEE EMBS, New York, 2006, pp. 2392–2395.

. E. Kyriacou, M. Pattichis, C. S. Pattichis, A. Mavrommatis, C. I. Christodoulou, S. Kakkos, and A. Nicolaides, “Classifcation of atherosclerotic carotid plaques using morphological analysis on ultrasound images,” J. Appl. Intell., vol. 30, no. 1, pp. 3–23, 2009.

. N N Tsiaparas1, S Golemati2, I Andreadis1, J Stoitsis1, I Valavanis1 and K S Nikita1 “Assessment of carotid atherosclerosis from B-mode ultrasound images using directional multiscale texture features” , Meas. Sci. Technol. 23 (2012) 114004 (10pp) doi:10.1088/0957-0233/23/11/114004

. A. Daniel Svozil, B. Vladimir KvasniEka, B. JiE Pospichal “Introduction to multi-layer feed-forward neural networks”, Slovak Technical University, Bratislava, SK-81237, Slovakia, 6 June 1997.

. V. Arulmozhi “Classification task by using Matlab Neural Network Tool Box – A Beginner’s View”-, International Journal of Wisdom Based Computing, Vol. 1 (2), August 2011.

. Oliver Faustc, Ganapathy Krishnamurthie “Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization”, 2007.

. J. Stoitsis, S. Golemati, N. Tsiaparas, and K. S. Nikita, “Texture characterization of carotid atherosclerotic plaque from B-mode ultrasound using Gabor filters,” in Proc. 31st Annu. Int. Conf. IEEE EMBS, Minneapolis, MN, 2009, pp. 455–458.

. J. Stoitsis, S. Golemati, K. S. Nikita, and A. N. Nicolaides, “Characterization of carotid atherosclerosis based on motion and texture features and clustering using fuzzy c-means,” in Proc. 26th Annu. Int. Conf. IEEE EMBS, San Francisco, CA, 2004, pp. 1407–1410.

. J. Stoitsis, N. Tsiaparas, S. Golemati, and K. S. Nikita, “Characterization of carotid atherosclerotic plaques using frequency-based texture analysis and bootstrap,” in Proc. 28th Annu. Int. Conf. IEEE EMBS, New York, 2006, pp. 2392–2395.

. Igor Aizenberg, “Multilayer Feedforward Neural Network Based on Multi-Valued Neurons (MLMVN) and a Backpropagation Learning Algorithm”, Published in Soft Computing, vol. 11, No 2, January, 2007, pp. 169-183.

. M.-L. M. Grnholdt, B. G. Nordestgaard, T. V. Schroeder, S. Vorstrup, and H. Sillesen, “Ultrasonic echolucent carotid plaques predict future strokes,” Circulation, vol. 104, no. 1, pp. 68–73, Jul. 2001.

. C. I. Christodoulou, C. S. Pattichis, M. Pantziaris, and A. Nicolaides, “Texture based classifcation of atherosclerotic carotid plaques,” IEEE Trans. Med. Imag., vol. 22, no. 7, pp. 902–912, Jul. 2003.

. A. F. AbuRahma, J. T.Wulu, Jr., and B. Crotty, “Carotid plaque ultrasonic heterogeneity and severity of stenosis,” Stroke, vol. 33, no. 7, pp. 1772– 1775, Jul. 2002.

. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995.

. D. W. Droste, M. Karl, R. M. Bohle, and M. Kaps, “Comparison of ultrasonic and histopathological features of carotid artery stenosis,” Neurol. Res., vol. 19, no. 4, pp. 380–384, Aug. 1997.

. A. Maton, J. Hopkins, C. W. McLaughlin, S. Johnson, M. Q. Warner, D. LaHart, and J. D. Wright, Human Biology and Health. Englewood Cliffs, NJ: Prentice-Hall, 1993.

. T. Craven, J. E. Ryu, M. A. Espeland, F. R. Kahl, W. M. McKinney, J. F. Toole, M. R. Mc Mahan, C. J. Thompson, G. Heiss, and J. R. Crouse, Jr., “Evaluation of the associations between carotid artery atherosclerosis and coronary artery stenosis: A case-control study,” Circulation, vol. 82, no. 4, pp. 1288–1292, Oct. 1990.

. Cosmin Mutu1, Nicoleta Minea2, Marcel Pereanu1 “Comparative Study of Carotid Intima Media Thickness in Ischemic Stroke Subtypes”-Lucian Blaga University of Sibiu, Academic Emergency Hospital Sibiu, Academic Emergency Hospital Sibiu, 2012.

. V. Vapnik, Statistical Learning Theory. New York: Willey, 1998.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.