

An Approach of Using Ontologies in Association Rules Mining
Abstract
Keywords
References
R. Agrawal, T. Imielinski, and A. Swami, ―Mining Association Rules between Sets of Items in Large Databases,‖ Proc. ACM SIGMOD, pp. 207-216, 1993.
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.
A. Silberschatz and A. Tuzhilin, ―What Makes Patterns Interesting in Knowledge Discovery Systems,‖ IEEE Trans. Knowledge and Data Eng. vol. 8, no. 6, pp. 970-974, Dec. 1996.
M.J. Zaki and M. Ogihara, ―Theoretical Foundations of Association Rules,‖ Proc. Workshop Research Issues in Data Mining and Knowledge Discovery (DMKD ‘98), pp. 1-8, June 1998.
D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, ―Mafia: A Maximal Frequent Itemset Algorithm,‖ IEEE Trans. Knowledge and Data Eng., vol. 17, no. 11, pp. 1490-1504, Nov. 2005.
J. Li, ―On Optimal Rule Discovery,‖ IEEE Trans. Knowledge and Data Eng., vol. 18, no. 4, pp. 460-471, Apr. 2006.
M.J. Zaki, ―Generating Non-Redundant Association Rules,‖ Proc. Int‘l Conf. Knowledge Discovery and Data Mining, pp. 34-43, 2000.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, ―Efficient Mining of Association Rules Using Closed Itemset Lattices,‖ Information Systems, vol. 24, pp. 25-46, 1999.
H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila, ―Pruning and Grouping of Discovered Association Rules,‖ Proc. ECML-95 Workshop Statistics, Machine Learning, and Knowledge Discovery in Databases, pp. 47-52, 1995.
B. Baesens, S. Viaene, and J. Vanthienen, ―Post-Processing of Association Rules,‖ Proc. Workshop Post-Processing in Machine Learning and Data Mining: Interpretation, Visualization, Integration, and Related Topics with Sixth ACM SIGKDD, pp. 20-23, 2000.
J. Blanchard, F. Guillet, and H. Briand, ―A User-Driven and Quality-Oriented Visualization for Mining Association Rules,‖ Proc. Third IEEE Int‘l Conf. Data Mining, pp. 493-496, 2003.
B. Liu, W. Hsu, K. Wang, and S. Chen, ―Visually Aided Exploration of Interesting Association Rules,‖ Proc. Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD), pp. 380-389, 1999.
G. Birkhoff, Lattice Theory, vol. 25. Am. Math. Soc., 1967.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, ―Discovering Frequent Closed Itemsets for Association Rules,‖ Proc. Seventh Int‘l Conf. Database Theory (ICDT ‘99), pp. 398-416, 1999.
M. Zaki, ―Mining Non-Redundant Association Rules,‖ Data Mining and Knowledge Discovery, vol. 9, pp. 223-248, 2004.
A. Maedche and S. Staab, ―Ontology Learning for the Semantic Web,‖ IEEE Intelligent Systems, vol. 16, no. 2, pp. 72-79, Mar. 2001.
B. Liu, W. Hsu, L.-F. Mun, and H.-Y. Lee, ―Finding Interesting Patterns Using User Expectations,‖ IEEE Trans. Knowledge and Data Eng., vol. 11, no. 6, pp. 817-832, Nov. 1999.
I. Horrocks and P.F. Patel-Schneider, ―Reducing owl Entailment to Description Logic Satisfiability,‖ J. Web Semantics, pp. 17-29, vol. 2870, 2003.
J. Pei, J. Han, and R. Mao, ―Closet: An Efficient Algorithm for Mining Frequent Closed Itemsets,‖ Proc. ACM SIGMOD Workshop Research Issues in Data Mining and Knowledge Discovery, pp. 21-30, 2000.
M.J. Zaki and C.J. Hsiao, ―Charm: An Efficient Algorithm for Closed Itemset Mining,‖ Proc. Second SIAM Int‘l Conf. Data Mining, pp. 34-43, 2002.
E. Baralis and G. Psaila, ―Designing Templates for Mining Association Rules,‖ J. Intelligent Information Systems, vol. 9, pp. 7-32, 1997.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.