

Embedded Systems Neural Network Stream Processing Core (NnSP)
Abstract
Keywords
References
D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano, “Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot,” in Proc. The NASA/Dod Conference on Evolvable Hardware, 2003.
A. Prez-Uribe, “Structure-adaptable digital neural networks,” Ph.D. dissertation, Swiss Federal Institute of Technology-Lausanne, Lausanne, 1999.
K. W. Przytula and V. K. Prasnna, Paralle Digital Implementations of Neural Networks. Englewood Cliffs, New Jersey: Prentice-Hall, 1993.
S. M. Fakhraie and K. C. Smith, VLSI-Compatible Implementations for Artificial Neural Networks. Norwell, Massachusets: Kluwer-Academic Publisher, 1997.
B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Owens, B. Towles, A. Chang, S. Rixner, Imagine: Media processing with streams, IEEE Micro, pp. 35-46, Volume 21, No. 2, (March 2001).
U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. Ahn, P. Mattson, J. Owens, Programmable stream processors, IEEE Computer, pp. 54-62, Volume 36, No. 8, (August 2003).
J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Adaptive Systems: Fundamentals through Simulation. New Yourk, NY: John- Wiley & Sons, 2000.
G. Dorffner, “Unified framework for MLPs and RBFNs: Introducing conic section networks,” Cybernetics and Systems: An International Journal, vol. 25, pp. 511–554, 1994.
(2005). [Online]. Available: www.k-team.com.
Olivier Michel. Khepera simulator package version 2.0: Freeware mobile robot simulator written at the University of Nice Sophia--Antipolis by Olivier Michel, 2005. Downloadable from the World Wide Web at http://wwwi3s.unice.fr/~om/khep-sim.html.
W. Elmenreich, “Intelligent methods for embedded systems,” in Proc.of the First Workshop on Intelligent Solutions for Embedded Systems, Vienna, Austria, June 2003, pp. 3–11.
B. Mathew, A. Davis, and M. Parker, “A low power architecture for embedded perception,” in Proc. of the 2004 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES’04). Washington DC,
T. Zhang, L. Benini, and G. D. Micheli, “Component selection andmatching for ip-based design,” in Proc. of Design, Automation and Test in Europe (DATE’01), Mar. 13–16, 2001, pp. 40 46.
S. M. Fakhraie and K. C. Smith, VLSI Compatible Implementations forArtificial Neural Networks. Norwell, Massachusetts: Kluwer Academic Publishers, 1997.
J. Zhu and P. Sutton, “FPGA implementations of neural networks – asurvey of a decade of progress,” in Proc. of the Field Programmable Logic Conference (FPL’2003), 2003, pp. 1062–1066
L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: Going toward hw/sw codesign,” IEEE Transactions on Neural Networks, vol. 14, no. 1, pp. 176–194, Jan. 2003.
D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano, “Hardwarespiking neural network with run-time reconfigurable conectivity in anautonomous robot,” in Proc. of the 2003 NASA/DoD Conference onEvolvable Hardware, Los Alamitos, California, 2003, pp. 189–198.
U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. Ahn, P. Mattson, andJ. Owens, “Programmable stream processors,” IEEE Computer, vol. 36, no. 8, Aug. 2003.
G. Mayraz and G. E. Hinton, “Recognizing handwritten digits usinghierarchical products of experts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 189–197, Feb. 2002.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.