Open Access Open Access  Restricted Access Subscription or Fee Access

Closed Loop Control of Isolated Bidirectional DC to DC Converter with High Conversion Ratio

Neethu P Gopal, P. Saritha

Abstract


A bidirectional dc to dc converter is necessary between the energy storage battery and the supply to match the voltage level. For high to low power range application bidirectional isolated converter is proposed. The isolated bidirectional converter is operated in both step down and step up modes. In this work, Bidirectional Isolated DC-DC converter is designed to operate with high conversion ratio and high efficiency. By using a voltage doubler circuit in high voltage side increase the conversion ratio .The simulation of the circuit with high voltage of 200V, Low voltage of 24V input, and output power of 200W is done using MATLAB. Closed loop control scheme is used to generate the gate pulses.


Keywords


Current Doubler Rectifier, Voltage Doubler Circuit, Synchronous Rectifier, High Conversion Ratio.

Full Text:

PDF

References


Chiu, H. J., & Lin, L. W. (2006). A bidirectional DC-DC converter for fuel cell electric vehicle driving system. Power Electronics, IEEE Transactions on, 21(4), 950-958.

Thomas, S., De Doncker, R. W., & Lenke, R. (2012). U.S. Patent Application 14/002,593.

Inoue, S., & Akagi, H. (2007). A bidirectional DC–DC converter for an energy storage system with galvanic isolation. Power Electronics, IEEE Transactions on, 22(6), 2299- 2306.

Lee, Y. S., & Chiu, Y. Y. (2005, November). Zero-current-switching switched capacitor bidirectional DC-DC converter. In Electric Power Applications, IEE Proceedings- (Vol. 152, No. 6, pp. 1525-1530). IET.

Rathore, A. K., Bhat, A. K., & Oruganti, R. (2012). Analysis, design and experimental results of wide range ZVS active-clamped LL type current-fed DC/DC converter for fuel cells to utility interface. Industrial Electronics, IEEE Transactions on, 59(1), 473- 485.

Kim, I. D., Paeng, S. H., Ahn, J. W., Nho, E. C., & Ko, J. S. (2007, June). New bidirectional ZVS PWM sepic/zeta DC-DC converter. In Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on (pp. 555-560). IEEE

Das, P., Mousavi, S., & Moschopoulos, G. (2010). Analysis and design of a nonisolated bidirectional ZVS-PWM DC–DC converter with coupled inductors. Power Electronics IEEE Transactions on, 25(10), 2630-2641

Peng, F. Z., Li, H., Su, G. J., & Lawler, J. S. (2004). A new ZVS bidirectional DC-DC converter for fuel cell and battery application. Power Electronics, IEEE Transactions on, 19(1), 54-65

Inoue, S., & Akagi, H. (2007). A bidirectional DC–DC converter for an energy storage system with galvanic isolation. Power Electronics, IEEE Transactions on, 22(6), 2299- 2306

Karshenas, H. R., Daneshpajooh, H., Safaee, A., Bakhshai, A., & Jain, P. (2011, February). Basic families of medium-power soft-switched isolated bidirectional dc-dc converters. In Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2011 2nd (pp. 92-97). IEEE

Himmelstoss, Felix A. "Analysis and comparison of half-bridge bidirectional DC-DC converters." In Power Electronics Specialists Conference, PESC'94 Record. 25th Annual IEEE, pp. 922-928. IEEE, 1994

Yamamoto, Koji, Eiji Hiraki, Toshihiko Tanaka, Mutsuo Nakaoka, and Tomokazu Mishima. "Bidirectional DC-DC converter with full-bridge/push-pull circuit for automobile electric power systems." In Power Electronics Specialists Conference, 2006. PESC'06. 37th IEEE, pp. 1-5. IEEE, 2006.

Jain, Manu, Matteo Daniele, and Praveen K. Jain. "A bidirectional dc-dc converter topology for low power application." Power Electronics, IEEE Transactions on 15, no. 4 (2000): 595-606

Kheraluwala, M. N., Randal W. Gascoigne, Deepakraj M. Divan, and Eric D. Baumann. "Performance characterization of a high-power dual active bridge dc-to-dc converter." Industry Applications, IEEE Transactions on 28, no. 6 (1992): 1294-1301

Dong Tan, F. "Maintaining soft switching in a phase-shifted bipolar DC-to-DC converter." In Applied Power Electronics Conference and Exposition, 1997. APEC'97 Conference Proceedings 1997. Twelfth Annual, vol. 2, pp. 783-789. IEEE, 1997

De Doncker, Rik WAA, Deepakraj M. Divan, and Mustansir H. Kheraluwala. "A three-phase soft-switched high-power-density DC/DC converter for high-power applications." Industry Applications, IEEE Transactions on 27, no. 1 (1991): 63-73

Xu, Dehong, Chuanhong Zhao, and Haifeng Fan. "A PWM plus phase-shift control bidirectional DC-DC converter." Power Electronics, IEEE Transactions on 19, no. 3 (2004): 666-675.

Patella, Benjamin J., Aleksandar Prodic, Art Zirger, and Dragan Maksimovic. "Highfrequency digital PWM controller IC for DC-DC converters." Power Electronics, IEEE Transactions on 18, no. 1 (2003): 438-446.

Hua, Guichao, Ching-Shan Leu, Yimin Jiang, and Fred CY Lee. "Novel zero-voltagetransition PWM converters." Power Electronics, IEEE Transactions on9, no. 2 (1994): 213-219

Tao, H., A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix. "Multi-input bidirectional DC-DC converter combining DC-link and magnetic-coupling for fuel cell systems." In Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, vol. 3, pp. 2021-2028. IEEE, 2005

K., Bhat, A. K., & Oruganti, R. (2012). Analysis, design and experimental results of wide range ZVS active-clamped LL type current-fed DC/DC converter for fuel cells to utility interface. Industrial Electronics, IEEE Transactions on, 59(1), 473- 485.

N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, Third Edition, John Wiley & Sons, Inc., 2003J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73..

Chuanhong Zhao, Simon D. Round, Johann W. Kolar, “An Isolated Three-Port Bidirectional DC-DC Converter With Decoupled Power Flow Management” IEEE Trans. Power Electron., Vol. 23, no. 5, pp. 2443- 2553, Set. 2008K. Elissa, “Title of paper if known,” unpublished.

E. Sanchis et al., “Bidirectional high-efficiency nonisolated step-up battery regulator,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 3, pp. 2230–2239, Jul. 2011.

R. J. Wai, R. Y. Duan, and K. H. Jheng, “High-efficiency bidirectional dc–dc converter with high-voltage gain,” IET Power Electron., vol. 5, no. 2, pp. 173–184, Feb. 2012.

M. Kwon, S. Oh, and S. Choi, “High gain soft-switched bidirectional DC–DC converter for eco-friendly vehicles,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1659–1666, Apr. 2014..

O. C. Onar, J. Kobayashi, D. C. Erb, and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61 no. 5, pp. 2018–2032, Jun. 2012.

C. M. Hong, L. S. Yang, T. J. Liang, and J. F. Chen, “Novel bidirectional DC–DC converter with high step-up/down voltage gain,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2009, pp. 60–66.

Inoue, S.; Akagi, H. A bidirectional DC-DC converter for an energy storage system with galvanic isolation. IEEE Trans. Power Electron. 2007, 22, 2299–2306.

De Doncker, R.W.; Divan, D.M.; Kheraluwala, M.H. A three-phase soft-switched high power-density Dc/Dc converter for high-power applications. IEEE Trans. Ind. Appl. 1991, 27, 63–73.

Kim, J.; Song, H.S.; Nam, K. Asymmetric duty control of a dual-half-bridge DC/DC converter for single-phase distributed generators. IEEE Trans. Power Electron. 2011, 26, 973–982.

Xie, Y.; Sun, J.; Freudenberg, J.S. Power flow characterization of a bidirectional galvanically isolated high-power DC/DC converter over a wide operating range. IEEE Trans. Power Electron. 2010, 25, 54–66.

Naayagi, R.T.; Forsyth, A.J.; Shuttleworth, R. High-Power bidirectional DC-DC converter for aerospace applications. IEEE Trans. Power Electron. 2012, 27, 4366–4379

Chen, W.; Rong, P.; Lu, Z.Y. Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss. IEEE Trans. Ind. Electron. 2010, 57, 3075–3086. ].

D. Wang and Y. F. Liu, “A zero-crossing noise filter for driving synchronous rectifiers of LLC resonant converter,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1953–1965, Apr. 2014

D. Wang and Y. F. Liu, “A zero-crossing noise filter for driving synchronous rectifiers of LLC resonant converter,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1953–1965, Apr. 2014


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.