Open Access Open Access  Restricted Access Subscription or Fee Access

Optical Behavior Analysis of Microwave Assisted Combustion Synthesis Copper Ferrite Nanoparticles

Lucas H. Hofmeister


Microwave combustion method was used to synthesize Cu1-xZnxFe2O4 (0 ≤x ≤ 0.5) nanoparticles. The synthesized Zn doped CuFe2O4 nanoparticles were characterized by techniques such as XRD (X-ray diffraction), HR-SEM (High resolution scanning electron microscopy), DRS-UV (visible diffuse reflectance spectroscopy), PL (photoluminescence) and FT-IR (Fourier transform IR spectroscopy). XRD (X-ray diffraction) and FT-IR results in the formation of Cu1-xZnxFe2O4 (0 ≤ x ≤ 0.5) nanoparticle. The crystallite size and lattice parameter were determined as 15 -19 nm and 8.319 -8.400 Å respectively. HR-SEM revealed the presence of agglomerated spherical shaped particles in Cu1-xZnxFe2O4.Elemental mapping of pure and Zn doped CuFe2O4 is done using energy dispersive X-ray analysis. The band gap was calculated with the Kubelka-Munk function was found in the range from2.30 to 2.51 eV. Finally, M-H curves were plotted and the magnetic properties, such as coercivity, remanent magnetization, and saturation magnetization were determined.


Copper Ferrite, Structural Analysis, Morphological Materials.

Full Text:



B. Vinayak, Kamblea, A.M. Umarji, Effect of Pt doping on Gas Sensing properties of porous Chromium Oxide films through Kinetic Response Analysis Approach, RSC advances.5 (2015) 27509-27516.

C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng,Y. Wang,J.Z. Jiang,ZnFe2O4 Nanocrystals: Synthesis and Magnetic Properties, J. Phys. Chem. C. 111 (2007) 12274-12278.

C.F.M. Costa, R. H.G.A. Kiminami, P.T.A. Santos, J. F. Silva, ZnAl2O4 co-doped with Yb3+/Er3+ prepared by combustion reaction: evaluation of photophysical properties, J. Mater. Sci, 48 (2013) 172-177.

C.Mukherjee, D.Mondal, M. Sarkar, J. Das. Nanocrystalline nickel zinc ferrite as an efficient alcohol sensor at room temperature,Inter. J. Environ. Agri. Biotech. 2 (2017) 799-804.

D. Ravinder, Electrical transport properties of cadmium substituted copper ferrites, Mater. Lett., 43 (2000) 129-138.

D.H. Kim, H. Zeng, C. Thian, C.S.Brazel, T1 and T2, Relaxivities of succimer-coated MFe23+O4 (M¼ Mn2+, Fe2+ and Co2+) Inverse spinel ferrites for potential use as phase-contrast agents in medical MRI, J.Magn. Magn. Mater. 321 (2009) 3899-3904.

H. Kavas, A. Baykal, S. Muhammet, Toprak, Y.K Glua, A.Murat, S.B. Aktas, Cation distribution and magnetic properties of Zn doped NiFe2O4nanoparticles synthesized by PEG-assisted hydrothermal route, J. Alloys Compd. 479 (2009) 49-55.

H. Mohebbi, T. Ebadzadeh, F.A. Hesari, Synthesis of nano-crystalline NiO-YSZ by microwave-assisted combustion synthesis, Powder Technol. 188 (2009) 183-186.

H. Mohebbi, T. Ebadzadeh, F.A. Hesari, Synthesis of nano-crystalline (Ni/NiO)-YSZ by microwave-assisted combustion synthesis method: The influence of pH of precursor solution, J. Power Sources. 178 (2008) 64-68.

H. Rajak, P. Mishra, Microwave–assisted combinatorial chemistry: The potential approach for acceleration of drug discovery, J. Sci. Ind. Res. 63 (2004) 641-654.

J. Yang, M. Gao, L. Yang ,Y. Zhang ,J. Lang ,D. Wang ,Y. Wang, H. Liu, H. Fan, Low- temperature growth and optical properties of Ce-doped ZnO nanorods, J. Appl. Surf. Sci. 255 (2008) 2646-2650.

K. Tahmasebi, M.H. Paydar, Microwave assisted solution combustion synthesis of alumina-zirconia, ZTA, nanocomposite powder, J. Alloys Compd. 509 (2011) 1192-1196.

M. Sundararajan, L. John Kennedy, Photocatalytic removal of rhodamine B under irradiation of visible light using Co1-xCuxFe2O4 (0 ≤ x≤0.5) nanoparticles. J.Environ. Chem. Engineer.5 (2017) 4075-4092.

M. Sundararajan, L.J. Kennedy, J.J. Vijaya, U. Aruldoss, Microwave Combustion synthesis of Co1-xZnxFe2O4 (0 ≤ x≤0.5): structural,magnetic, optical and vibrational spectroscopic studies, Spectrochim. Acta Part A: Molecu. Biomole.Spectro. 140 (2014) 421-430.

M.F. Valan, A. Manikandan, S.A. Antony, Microwave Combustion Synthesis and Characterization Studies of Magnetic Zn1–xCdxFe2O4(0≤ x≤ 0.5) Nanoparticles,J. Nano. Nanotech. 15 (2015) 4543-4551.

M.T. Hammad, J.K. Salem, A.A. Amsha, N.K. Hejazy, Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method, J. Alloys Compd.741 (2018) 123-130.

N.I. Ahmad, T. Abbas, M.U. Islam, A. Maqsood, Study of cation distribution for Cu-Co nanoferrites synthesized by the sol-gel method, Ceram. Inter. 39 (2013) 6735-6741.

O. Masala, R. Seshadri, Spinel Ferrite/MnO Core/Shell Nanoparticles: Chemical Synthesis of All-Oxide Exchange Biased Architectures,Am. Chem. Soc.127 (2005) 9354-9355.

P. Acharya, R. Desai, V.K. Aswal, R.V. Upadhyay, Structure of Co-Zn ferrite ferrofluid: A small angle neutron scattering analysis, J. Phys. 71 (2008) 1069-1074.

P. Kubelka, F. Munk, Ein Beitrag zur Optik derFarbanstriche, Z. Tech. Physik. 12 (1931) 593-601.

R. Rai, K. Verma, S. Sharma, S. S. Nair, M. Almeida Valente, A. L. Kholkin, and N. A. Sobolev,Study of structural and ferromagnetic properties of pure and Cd doped copper Ferrite, J.Phys. Chem. Solids.72 (2011) 862-868.

R. Rani, S.K. Sharma, K.R. Pirota, M. Knobel, S. Thakur, M. Singh, Effect of zinc Concentration on the magnetic properties of cobalt-zinc nanoferrites, Ceram.Inter. 38 (2012) 2389-2394.

R. Valenzuela, Magnetic Ceramics, J.Am.Chem.Soc.118 (1996) 5-6.

R.Tamura, T. Ohno, H. Kitazawa, A generalized magnetic refrigeration scheme, Appl. Phy. Lett. 104 (2014) 052415 1-4.

R.V. Mangalaraja, J. Mouzon, P. Hedstrom, C.P. Camurri, S. Ananthakumar, M.Oden, Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity,Powder Technol. 191 (2009) 309 -314.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.