Open Access Open Access  Restricted Access Subscription or Fee Access

Functionality Search in Hypothetical Proteins of Halobacterium Salinarum

Swapnil G Sanmukh, Waman N Paunikar, Dilip Budha Meshram, Tarun K Ghosh

Abstract


The Halobacterium salinarum are extremely halophilic archaeon. The complete genome sequence of Halobacterium salinarum was deciphered, which revealed the presence of various gene for hypothetical proteins whose function are not yet understood. We analyzed complete genome of Halobacterium salinarum for hypothetical proteins from which 524 uncharacterized proteins showed conserved domains for biologically active components. Our attempt is to predict the function of these hypothetical proteins by the application of computational methods and Bioinformatics. The probable function prediction of the hypothetical protein was done by using Bioinformatics web tools like CDD-BLAST, INTERPROSCAN, PFAM and COGs by searching sequence databases for the presence of orthologous enzymatic conserved domains in the hypothetical sequences. These study revealed presences of enzymatic functional domain in Halobacterium salinarum; their roles are yet to be discovered. These deciphered enzymatic data for hypothetical proteins can be used for the understanding of functional, structural, evolutionary and metabolic development of Halobacterium spp. and its life cycle along with their role in host evolution and adaptation.

Keywords


Bioinformatics Web Tools, Conserved Domains, Uncharacterized Proteins, Life Cycle, Host Evolution.

Full Text:

PDF

References


Alex, B., Lachlan, C., Richard, D., Robert, D. F., Volker, H., Sam, G.J., Ajay, K., Mhairi, M., Simon, M., Erik, L. L. S., David, J. S., Corin Y., Sean, R. E., (2004). The Pfam families’ database. Nucleic Acids Research, Vol. 32, D138-D141.

Aron, M. Bauer., John, B. A., Myra, K. D., Carol, D. S., Noreen, R. G., Marc, G., Luning, H., Siqian, H., David, I. H., John, D. J., Zhaoxi, K., Dmitri, K., Christopher, J. L.,Cynthia A. L., Chunlei, L., Fu, L., Shennan, L., Gabriele, H. M., Mikhail, M., James, S. S., Narmada, T., Roxanne, A. Y., Jodie, J. Y., Dachuan, Z., Stephen, H. B., (2006). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Research, Vol. 35, D237–D240.

Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, et al. (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14: 1025–1035.

Barkley SJ, Cornish RM, Poulter CD (2004) Identification of an archaeal type II isopentenyl diphosphate isomerase in Methanothermobacter thermautotrophicus. J Bacteriol 186:1811–1817.

Bonet ML, Llorca FI, Cadenas E (1992) Alkaline p-nitrophenylphosphate phosphatase activity from Halobacterium halobium. Selective activation by manganese and effect of other divalent cations. Int J Biochem 24: 839–845.

Dilip, G., Alankar, R., (2009). Computational Function and Structural Annotations for Hypothetical Proteins Bacillus anthracis. Biofrontiers, 1, 27-36.

Edward, E., Gary, L. G., Osnat, H., John, M., John, O., Roberto, J. P., Linda, B., Delwood, R., Andrew, J. H., (2000). Biological function made crystal clear- annotation of hypothetical proteins via structural genomics. Current Opinion in Biotechnology 11, 25-30.

Engel MB, Catchpole HR (2005) A microprobe analysis of inorganic elements in Halobacterium salinarum. Cell Biol International 29: 616–622.

Graupner M, Xu HM, White RH (2002) New class of IMP cyclohydrolases in Methanococcus jannaschii. J Bacteriol 184:1471–1473.

Grey VL, Fitt PS (1976) Improved synthetic growth medium for Halobacterium cutirubrum. Can J Microbiol 22:440–442.

Grochowski LL, Xu HM, White RH (2005) Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway. J Bacteriol 187:7382– 7389.

Grochowski LL, Xu HM, White RH (2006b) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198.

Kennelly PJ (2003) Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 370: 373–389.

Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9: 219–227.

Martin EL, Reinhardt RL, Baum LL, Becker MR, Shaffer JJ, et al. (2000) The effects of ultraviolet radiation on the moderate halophile Halomonas elongata and the extreme halophile Halobacterium salinarum. Can J Microbiol 46: 180–187.

McCready S, Muller JA, Boubriak I, Berquist BR, Ng WL, et al. (2005) UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Systems 1: 3.

Oesterhelt D, Krippahl G (1973) Light inhibition of respiration in Halobacterium halobium. FEBS Lett 36:72–76

Ownby K, Xu H, White RH (2005) A Methanocaldococcus jannaschii archaeal signature gene encodes for a 5-formaminoimidazole- 4-carboxamide-1-beta-D-ribofuranosyl 50-monophosphate synthetase. A new enzyme in purine biosynthesis. J Biol Chem 280:10881–10887

Oxenrider KA, Kennelly PJ (1993) A protein-serine phosphatase from the halophilic archaeon Haloferax volcanii. Biochem Biophys Res Commun 194: 1330–1335.

Pfeiffer F, Schuster SC, Broicher A, Falb M, Palm P, Rodewald K, Ruepp A, Soppa J, Tittor J, Oesterhelt D (2008). Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics. 91(4):335-46.

Porat I, Sieprawska-Lupa M, Teng Q, Bohanon FJ, White RH, Whitman WB (2006) Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol 62:1117–1131.

Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58: 755–805.

Rawal N, Kelkar SM, Altekar W (1988) Alternative routes of carbohydrate metabolism in halophilic archaebacteria. Indian J Biochem Biophys 25:674–686

Roman, L. T., Michael, Y., Galperin, Darren A. Natale, Eugene V. Koonin (2000). The COG database: a tool for genome –scale analysis of protein functions and evolution. Nucleic Acid Research. 28, 33-36.

Sanmukh S. G., Paunikar W. N., Ghosh T. K., Chakrabarti T. Structure and function prediction of hypothetical proteins in Vibriophages. Inter. J. of Biometric and Bioinformatics vol.4 (5). (Published Online) 2010.

Tebbe A, Klein C, Bisle B, Siedler F, Scheffer B, et al. (2005) Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics 5: 168–179.

White RH (2004) L-aspartate semialdehyde and a 6-deoxy-5-ketohexose L-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43:7618–7627

Whitehead K, Kish A, Pan M, Kaur A, Reiss DJ, et al. (2006) An integrated systems approach for understanding cellular responses to gamma radiation. Mol Syst Biol 2: 47.

Woodson JD, Escalante-Semerena JC (2004) CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B-12 precursor cobinamide in archaea. PNAS 101:3591–3596

Woodson JD, Peck RF, Krebs MP, Escalante-Semerena JC (2003) The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis. J Bacteriol 185:311– 316

Zayas CL, Woodson JD, Escalante-Semerena JC (2006) The cobZ gene of Methanosarcina mazei Go1 encodes the non-orthologous replacement of the alpha-ribazole-50-phosphate phosphatase (CobC) enzyme of Salmonella enterica. J Bacteriol 188:2740–2743

Zdobnov, E. M., Rolf, A., (2001). Interproscan- an integration platform for the signatures recognition methods in InterPro. Bioinformatics 17, 847-848.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.