Open Access Open Access  Restricted Access Subscription or Fee Access

Analysis of Air Core Index Guided Photonic Crystal Fiber

S. Revathi, N. Amutha Prabha, S. K. Sudheer, P. Prabu

Abstract


In this paper, two types of PCF structure are designed as air core index guided with three rings of three different diameters nmis numerically investigated, using finite element method (COMSOL Multi Physics3.2a). The impact of the air-core on the three parameters that is, effective mode index, confinement loss and birefringence behavior are studied for this two different types of structure. By destroying the symmetry of the structure and make effective index difference between two orthogonal polarization states, birefringence is achieved. By using different diameter of air- holes around the newly formed core, the confinement loss is reduced and birefringence becomes high. It is seen that the effective mode index decreases with increase in wavelength and birefringence decreases with increase in normalized frequency.


Keywords


Comsol Multi Physics, Finite -Element Method, Photonic Crystal Fiber.

Full Text:

PDF

References


J.C. Knight, T.A.Birks, and P.St.J.Russell, and D.m. Atkin,” all silica single mode optical fiber with photonic crystal cladding”Opt.Lett21,1547-1549,(1996).

T.A. Birks, J.C.Knight, P.St.J.Russell, “Endlessly single- mode Photonic crystal fiber.” Opt.Lett.22, 961-963(1997).

J.C. Knight, J.Broeng, T.A.Birks, and P.St.J.Russell, “Photonic band gap guidance in optical fiber.” science 282,1476- 1478,(1998).

M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite difference time domain method”, Microwave Opt. Technol.Lett. vol. 30, pp. 327, 2001.

Finazzi, V., T.M. Monro and D.J.Riharson, 2003. small-core silica holey fibers : nonlinearity and confinement loss trade–offs.JOpt Soc AmB,20(7):1427-1436.

Matsui, T.,J. Zhou,K. Nakajima and I.Sankawa,2005.Dispersion flattened photonic crystal fiber with large effective area and low confinement loss.J. Lightwave Technol ,23(12): 4178-4183

J.Boreng, D.Mongilevstev, S.E.Barkou, and A.Bjarklev, “photonic crystal fibers: A new class of optical waveguides.” Opt.Fiber Technol.5, 305-330(1999).

T.A.Birks, J.C.Knight, B.J.Mangan, and P.St.J.Russell, “photonic crystal fiber: An endless variety,” IEICE Trans. Electron. E84-C, 585-592,(2001).

R.F Crgan, B.J.Mangan, J.C.Knight, T.A.Birks, and P.St.J.Russell,P.J.Roberts, and D.C.Allan, “single-mode photonic band gap guidance of light in air,” science 285,1537-1539,(1999).

Russell P St J, IEEE Journal of Lightwave Technology, 24 (2006), 4729.

R. K. Sinha, S. K. Varshney, “Dispersion Properties of Photonic crysta Fibers”, Microwave Opt. Technol. Lett. vol. 37, pp. 129-132, 2003

Yan-feng Li, Ching-yue Wang, Ming-lie Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation”, Opt. Commun. vol. 238, pp. 29-33, 2004.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey Fibers: an efficient modal model”, J. Lightwave Technol. vol. 17,pp. 1093-1102, 1999.

Kunimasa.Kunimasa Saitoh, Masanori Koshiba, IEEE J.Quantum Elect 38(2002)927.

Yan-feng Li, Ching-yue Wang, Ming-lie Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation”, Opt. Commun. vol. 238, pp. 29-33, 2004.

Jingyuan Wang et.al,. “Properties of index-guided PCF with air core.” Optics and laser technology pg.no.317- 312, 2007.

Chen Ming et.al, “Design of a new type high birefringence photonic crystal fiber.” Optoelectronics letter, Vol 4,no.1Jan 2008.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.