Open Access Open Access  Restricted Access Subscription or Fee Access

Low Power 8TSRAM Design

Manju Maria Jose, T. Prabakaran

Abstract


SRAM cell stability will be a primary concern for future technologies due to variability and decreasing power supply
voltages. The conventional SRAM utilize 6 transistors. This cell has high power consumption due to false read operation. In order to improve stability, a half-select disturb free transistor SRAM cell is proposed. The existing cell is 6T SRAM. The proposed system utilizes this 6Tcell along with a decoupling logic. It utilizes a gated inverter SRAM cells to decouple the column select read disturb condition in half selected columns. This is one of the limitation to lowering the cell voltage. A false read operation is common in conventional 6T design due to bit select and word line timing mismatch. This is eliminated using the proposed 8T design. The design style analyzed is sense amp read based design. With the elimination of half select disturb, it is possible to enhance the overall array low voltage operability. Hence power consumption can be reduced by around 20%-30%. The tool used for simulation is Microwind.


Keywords


Decoupled Cell, Low Power 8T, SRAM, False Read, Sense AMP.

Full Text:

PDF

References


Rajiv V. Joshi, Rouwaida Kanj, and Vinod Ramadurai “A Novel

Column-Decoupled 8T Cell for Low-Power Differential and Domino-

Based SRAM Design”ieee transactions on VLSI systems,

vol.19,no.5,MAY2011

R. Joshi, S. Mukhopadhyay, D. W. Plass, Y. H. Chan, C.-T. Chan,and A.

Devgan, “Variability analysis for sub-100 nm PD/SOI CMOS SRAM

cell,” in Proc. 30th Eur. Solid-State Circuits Conf., Sep. 2004, pp. 211–

L. Itoh, K. Osada, and T. Kawahara, “Reviews and future prospects of

low voltage embedded RAMs,” in Proc. IEEE Custom Integr. Circuits

Conf., 2004, pp. 339–344.

K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N.

Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “3-GHz 70 MB SRAM in 65 nm CMOS technology with integrated column-based dynamic power

supply,” in ISSCC Dig. Tech. Papers, Feb. 2005, pp. 474–475.

M. Kellah, Y. Yibin, S. K. Nam, D. Somasekhar, G. Pandya, A.

Farhang, K. Zhang, C. Webb, and V. De, “Wordline & bitline pulsing

schemes for improving SRAM cell stability in low-Vcc 65 nm CMOS

designs,” in Proc. VLSI Circuits Symp., 2006, pp. 9–10.

V. Ramadurai, R. Joshi, and R. Kanj, “A disturb decoupled column

select 8T SRAM cell,” in Proc. CICC, 2007, pp. 25–28.

W. Henkels, W. Hwang, R. Joshi, and A. Williams, “Provably correct

storage arrays,” U.S. Patent 6 279 144, Aug. 21, 2001.

L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R.

K. Montoye, L. Sekaric, S. J. McNab, A. W. Topol, C. D. Adams, K. W.

Guarini, and W. Haensch, “Stable SRAM cell design for the 32 nm node

and beyond,” in Proc. IEEE Symp. VLSI Technol., 2005, pp.128–129.

R. Joshi, Y. Chan, D. Plass, T. Charest, R. Freese, R. Sautter,W.

Huott,U. Srinivasan, D.Rodko, P. Patel, P. Shephard, and T.Werner, “A

low power and high performance SOI SRAM circuit design with

improved cell stability,” in Proc. SOI Conf., Oct. 2006, PP.4-7

C. Wann, R. Wong, D. J. Frank, R. Mann, S.-B. Ko, P. Croce, D. Lea,

D. Hoyniak, Y.M Lee, J. Toomey, M. Weybright, and J. Sudijono,

“SRAM cell design for stability methodology,” in Proc. IEEE VLSITSA

Int. Symp. VLSI Technol., 2005, pp. 21–22.

R. Joshi, “Random access memory with stability enhancement and early

ready elimination,” U.S. Patent Appl. A1/20060250860, Nov. 9,2006.

H. Pilo, J. Barwin, G. Braceras, C. Browning, S. Burns, J. Gabric,

S.Lamphier, M. Miller, A. Roberts, and F. Towler, “An SRAM design in

nm and 45 nm technology nodes featuring read and write-assist

circuits to expand operating voltage,” in Proc. Symp. VLSI Circuits, Jun.

, pp. 15–16.

R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and its

application to the analysis of SRAM designs in the presence of rare

failure events,” in Proc. Des. Autom. Conf., Jul. 2006, pp. 69–72.

R. Joshi, “A floating-body dynamic supply boosting technique for Lowvoltage

SRAM in nanoscale PD/SOI CMOS technologies,” in Proc.

ISLPED, pp. 8–13.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.