Open Access Open Access  Restricted Access Subscription or Fee Access

A Robust Scheme for Tracking of a Mobile Node using WiFi Signals

Muhammad Haroon Siddiqui, Muhammad Rehan Khalid


This paper evaluates the performance of a novel algorithm for tracking of a mobile node, interms of execution time and root mean square error (RMSE). Particle Filter algorithm is used to track the mobile node, however a new technique in particle filter algorithm is also proposed to reduce the execution time. The stationary points were calculated through trilateration and finally by averaging the number of points collected for a specific time, whereas tracking is done through trilateration as well as particle filter algorithm. Wi-Fi signal is used to get initial guess of the position of mobile node in x-y coordinates system. Commercially available software “Wireless Mon” was used to read the WiFi signal strength from the WiFi card. Visual C++ version 6 was used to interact with this software to read only the required data from the log-file generated by “Wireless Mon” software. Results are evaluated through mathematical modeling and MATLAB simulation. The proposed method has the advantage of being based on analytical calculations, which gives closed formulas for the position estimates. Therefore, the implementation of the algorithm is simple and suitable for nodes of limited computational power, while still sufficiently accurate for use in indoor or outdoor environments


Particle Filter, Tracking, Trilateration, WiFi, Wireless Local Area Network.

Full Text:



A.Chakraborty, “A distributed architecture for mobile, location-dependent applications,” M.S. thesis, Massachusetts Institute of Technology, May 2000.

T.Cutler, “Wireless ethernet and how to use it,” in The Online Industrial Ethernet Book, Issue 5. 1999.

A.Neskovic, N.Neskovic, and G.Paunovic, “Modern approaches in modeling of mobile radio systems propagation environment,” IEEE Communications Surveys, 2000.

H.Hashemi, “The indoor radio propagation channel,” in Proceedings of the IEEE, July 1993, vol. 81, pp. 943–968

D.Fox, W.Burgard, and S.Thrun, “Markov localization for mobile robots in dynamic environments,” Journal of Artificial Intelligence Research, vol. 11, pp. 391–427, 1999.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

P. M. Djuric, M. Vemula, and M. F. Bugallo, “Target tracking by particle filtering in binary sensor networks,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2229–2238, Jun. 2006.

D.Fox, S.Thrun, F.Dellaert, andW.Burgard, “Particle filters for mobile robot localization,” in Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York, 2001.

J.J.Leonard and Durrant-Whyte, “Mobile robot localization by tracking geometric beacons,” IEEE Transactions on Robotics and Automation, vol. 2, pp. 1080–1087, 1991.

A.M.Ladd, K.E.Bekris, G.Marceau, A.Rudys, D.S.Wallach, and L.E.Kavraki, “Robotics-based location sensing for wireless ethernet,” in Eighth ACM International Conference of Mobile Computing and Networking (MOBICOM 2002), Atlanta,GA, September 2002.

P.Bahl and V.N.Padmanabhan, “Radar: An in-building rfbased user location and tracking system,” in Proceedings of IEEE Infocom 2000, Tel- viv,Israel, March 2000, vol. 2, pp. 775–784.

T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanan. A probabilistic approach to wlan user location estimation. International Journal of Wireless Information Networks, 9(3), July 2002.

Ioannis M. Rekleitis, “A Particle Filter Tutorial for Mobile Robot Localization”.Technical Report TR-CIM-04-02,Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada, 2004.

A. Goldsmith, “Wireless Communications”, Cambridge University Press, 2005.

A. Bahai, B. Saltzberg, Multicarrier Digital Communications: Theory and Applications of OFDM, Kluwer Academic, New York, 1999.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.