On (1, 2)*-π g - Homeomorphisms in Bitopological Spaces
Abstract
In this paper, we introduce (1,2)*-πg- closed maps from a bitopological space X to a bitopological space Y as the image of every τ 1,2-closed set is (1,2)*-πg-closed. Also we discuss about almost (1,2)*-πg- closed mappings. Further, the notions (1, 2)*-πghomeomorphism, (1, 2)*- πgC homeomorphism are introduced in bitopological spaces. We establish certain results relating to them.
Keywords
Full Text:
PDFReferences
I. Arockiarani and K. Mohana,(1,2)*-πgα- closed sets and (1,2)*-quasi-α-normal, Andartica J. Math.,7(3)(2010), 345-355.
I. Arockiarani and K. Mohana,(1,2)*-πgα-continuous functions in bitopological spaces, Acta Cinecia Indica (To Appear).
Devi. R, Balachandran. K and Maki. H, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J. Pure Appl. Math.,26,pp.271- 284,(1995).
M. Lellis Thivagar and O. Ravi, A Bitopological (1, 2)*-sem generalized continuous maps, Bulletin Malays.Sci.Soc.,2(29)(2006),79-88.
S.R. Malghan, generalized closed Maps,J. Karnatk Univ.Sci., 27(1982),82-88.
N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological spaces, Ph.D., Thesis, Bharathiar University, Coimbatore (1999).
O. Ravi, S. Pious Missier and T. Salai Parkunan, On Bitopological (1,2)*-Generalized Homeomorphisms, Int.J.Contemp.Math.Sciences,5(2010),No.11,534-557.
Singal. M.K. and Singal. A.R. 1968, Almost continuous mapping’s Yokohama, Math J.,16:63-73.
A. Vadivel and K. Vairamanickam, rg-closed and rg-open maps in Topological spaces, Int. Journal of Math. Analysis, Vol.4, 2010, no.10, 453-468.
DOI: http://dx.doi.org/10.36039/AA042011017
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.