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Abstract---The Challenges of Cluster Analysis and Related Work 

K-means is one of the most commonly used clustering algorithm, but 

it does not perform well on data with outliers or with clusters of 

diff erent sizes or non-globular shapes. The single link agglomerative 

clustering method is the most suitable for capturing clusters with non-

globular shapes, but this approach is very sensitive to noise and cannot 

handle clusters of varying density. However, most of the clustering 

challenges, particularly those related to “quality,” rather than 

computational resources, are the same challenges that existed decades 

ago: how to find clusters with diff ering sizes, shapes and densities, 

how to handle noise and outliers, and how to determine the number of 

clusters. The general idea of our novel subspace outlier model is to 

analyze for each point, how well it fits to the subspace that is spanned 

by a set of reference points. The experimental evaluation showed that 

proposed method can find more interesting and more meaningful 

outliers in high dimensional data with higher accuracy than full 

dimensional outlier models by no additional computational costs. 

 

Keywords---Clustering, High-Dimensional, Nearest Neighbours, 

Data Points, Root Mapping. 

I. INTRODUCTION 

LUSTERING in general is an unsupervised process of 

grouping elements together, so that elements assigned to 

the same cluster are more similar to each other than to the 

remaining data points [1]. This goal is often difficult to achieve 

in practice. Over the years, various clustering algorithms have 

been proposed, which can be roughly divided into four groups: 

partitional, hierarchical, density based, and subspace 

algorithms. Algorithms from the fourth group search for 

clusters in some lower dimensional projection of the original 

data, and have been generally preferred when dealing with data 

that are high dimensional [2], [3], [4], [5]. The motivation for 

this preference lies in the observation that having more 

dimensions usually leads to the so-called curse of 

dimensionality, where the performance of many standard 

machine-learning algorithms becomes impaired. 

The difficulties in dealing with high-dimensional data are 

omnipresent and abundant. However, not all phenomena that 

arise are necessarily detrimental to clustering techniques.  This 

paper that data points, which is the tendency of some data points 

in high-dimensional data sets to occur much more frequently in 

k-nearest neighbour lists of other points than the rest of the 

points from the set, can in fact be used for clustering. To our 
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knowledge, this has not been previously attempted. In a limited 

sense, data points in graphs have been used to represent typical 

word meanings in [6], which were not used for data clustering. 

Our current focus was mostly on properly selecting cluster 

prototypes, with the proposed methods tailored for detecting 

approximately outlier spherical clusters. 

II. RELATED WORK 

A. Density Based Clustering 

Density based clustering [8] differentiates regions which 

have higher density than its neighbourhood and does not need 

the number of clusters as an input parameter. Regarding a 

termination condition, two parameters indicate when the 

expansion of clusters should be terminated: given the radius of 

the volume of data points to look for a minimum number of 

points for the density calculations has to be exceeded. Local 

scaling is a technique which makes use of the local statistics of 

the data when identifying clusters. This is done by scaling the 

distances around each point in the dataset with a factor 

proportional to its distance to its kth nearest neighbour. Locally 

scaled densitybased clustering algorithm clusters points by 

connecting dense regions of space until the density falls below 

a threshold determined by the center of the cluster. In high-

dimensional spaces this is often not easy to estimate, due to data 

being very sparse. There is also the issue of choosing the proper 

neighbourhood size, since both small and large values of k can 

cause problems for density based approaches [9]. 

B. K-means++ 

The K-means++ is a specific way of choosing centers for the 

k-means algorithm. The relationship between k-means++ 

clustering and data points was briefly examined in [10], where 

it was observed that data points may not cluster well using 

conventional prototype-based clustering algorithms (K-means 

++) [7], since they not only tend to be close to points belonging 

to the same cluster (i.e., have low intra-cluster distance) but also 

tend to be close to points assigned to other clusters (low inter-

cluster distance). The demonstrable gains of k-means++ over 

random initialization is precisely in the constantly updated non-

uniform selection. The algorithm that works in a small number 

of iterations, selects more than one point in each iteration but in 

a non-uniform manner, and has provable approximation 
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guarantees. Data points can, therefore, be viewed as (opposing) 

analogues of outliers, which have high inter- and intra-cluster 

distance, suggesting that data points should also receive special 

attention [10].  

III. PROPOSED SYSTEM 

The proposed method identifies the patterns among data 

points and forms clusters of data points around these patterns. 

It operates by simultaneously considering all data point as 

potential patterns and exchanging messages between data 

points until a good set of patterns and clusters emerges. The root 

mapping and neighbour cluster is used to find the fitness value 

data points are exchanged between data points until a high-

quality set of patterns and corresponding clusters gradually 

emerges. 

A. Feature Selection 

A “feature” or “attribute” or “variable” refers to a portion of 

the data points. Typically before collecting data, features are 

specified or preferred. Features can be discrete, continuous, or 

insignificant. Feature selection for high-dimensional data 

clustering is the task of disregarding irrelevant and redundant 

terms in the vectors that represent the data points, aiming to find 

the smallest subset of terms that reveals “natural” clusters of 

data points. To Searching for the small subset figure: 1 of 

relevant terms will speed up the clustering process, while 

avoiding the curse of dimensionality. 

 

 
Fig. 1: Dimensionality Reduction 

 

The Irrelevance filter removes irrelevant features using a 

modified form of the Relief algorithm, which assigns relevance 

values to features by treating training samples as points in 

feature space. For each sample, it finds the nearest “hit” 

(another sample of the same class) and “miss” (a sample of a 

different class), and adjusts the significance value of each 

feature according to the square of the feature difference 

between the sample and the hit and miss. Irrelevance Filter 

feature selection methods evaluate attributes prior to the 

learning process, and without specific reference to the 

clustering algorithm that will be used to generate the final 

result. The filtered dataset may then be used by any clustering 

algorithms. 

B. Correlation of Root Mapping to Data Clusters 

A correlation between low data points elements and outliers 

was also observed. A low-points score indicates that a point is 

on average far from the rest of the points and hence probably an 

outlier. In high-dimensional spaces, however, low data point 

elements are expected to occur by the very nature of these 

spaces and data resource. The root mapping can be applied 

using more general notions of similarity, and the similarities 

may be positive or negative. The output of the algorithm is 

unchanged if the similarities are scaled and/or offset by a 

constant (as long as the preferences are scaled and/or offset by 

the same constant). To compute fitness measure over the set of 

possible clusters and then chooses among the set of cluster 

candidates points those that optimize the measure used. To 

identify the cluster of a specific vertex or to group all of the 

vertices into a set of clusters, and then present possible cluster 

fitness measures that serve for methods that produce the 

clustering by comparing different groupings and selecting one 

that meets or optimizes a certain criterion. The ratio of the 

cluster is to minimum sums of degrees either inside the cluster 

or outside it. A fitness function is evaluated for all neighbours 

and the outcome is used to choose to which neighbour the 

search will proceed. 

C. Neighbour clustering Algorithm 

The neighbour clustering algorithm works message passing 

among data points. Each data points receive the availability 

from others data points (from pattern) and send the 

responsibility message to others data points (to pattern). Sum of 

responsibilities and availabilities for data points identify the 

cluster patterns.  

The high-dimensional data point availabilities A (i, k) are 

zero: A(i, k) = 0, R (i, k) is set to the input similarity between 

point i and point k as its pattern, minus the largest of the 

similarities between point i and other candidate patterns.  

The cluster responsibilities are computed using the equation, 

𝑅(𝑖, 𝑘) ← 𝑆(𝑖, 𝑘) − 𝑚𝑎𝑥
𝑘′𝑠.𝑡.𝑘′≠𝑘

{𝐴(𝑖, 𝑘′) + 𝑆(𝑖, 𝑘′)} (1) 

In later iterations, when some data points are effectively 

assigned to other patterns, their availabilities will drop below 

zero. These negative availabilities will decrease the effective 

values of some of the input similarities S (i, k′) in the above rule, 

removing the corresponding candidate from competition. 

The above responsibility in equation (1) is update lets all data 

point patterns are compete for ownership of a data point, the 

following availability update gathers confirmation from data 

points as to whether each datas would make a good pattern: 

𝐴(𝑖, 𝑘) ← 𝑚𝑖𝑛 {0, 𝑅(𝑘, 𝑘)

+ ∑ max⁡{0, 𝑅(𝑖′, 𝑘)}

𝑖′𝑠.𝑡.𝑖′∈{𝑖,𝑘}

}⁡⁡(2) 

The data links are sent from cluster members (data points) to 

candidate patterns (data points), indicating how well-suited the 

data point would be as a member of the candidate pattern 

cluster. The rot mapping and Neighbour clustering is iteratively 

computes data responsibilities and data availabilities to 

overcome the outlier points. The algorithm terminates if 

decisions for the patterns and the cluster boundaries are 
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unchanged for convict’s iterations, or if maximum iterations are 

reached. The responsibilities and availabilities are messages 

that provide evidence for whether or not each data point should 

be in data points and if not to what outlier that data point should 

be assigned. 

 

Algorithm 1: Neighbour Clustering Algorithm 

Require: A, R, i, k  

1. Initialize A (i, k) =0, R (i, k) = 0, k=0, and S (i, k) = 0 

randomly 

2. repeat 

3. Update the data point responsibility by (1) where S (i, k) is 

the similarity of data points and root map pattern k. 

4. Update the data point availabilities by (2) 

5. Update self-availability by using (3) 

6. Compute sum = A (i, k) + R (i, k) for data point i and find 

the value of k that maximize the sum to identify the data 

points. 

7. If outlier points do not change for fixed number of 

iterations go to step 7 else go to step 1. 

IV. EXPERIMENTAL RESULTS 

The  proposed root mapping with neighbour clustering 

algorithm on Real-world data are usually much more complex 

and difficult to cluster, therefore such tests are of a higher 

practical significance. As not all data exhibit data points, the 

algorithms is tested both on intrinsically high-dimensional, 

high- data points and intrinsically low-to-medium dimensional, 

low-data. There were two different experimental setups. In the 

first setup, a single data set was clustered for many different K-

s (number of clusters), to see if there is any difference when the 

number of clusters is varied. In the second setup, 20 different 

data sets were all clustered by the number of classes in the data 

(the number of different labels). 

The clustering quality in these experiments was measured by 

two quality indices, the silhouette index and the isolation index 

[11], which measures a percentage of k-neighbour points that 

are clustered together. In the experimental setup, the two-part 

Miss-America data set (cs.joensuu.fi/sipu/datasets/) was used 

for evaluation. Each part consists of 6,480 instances having 16 

dimensions. Results were compared for various predefined 

numbers of clusters in algorithm calls. Each algorithm was 

tested 50 times for each number of clusters. Neighbourhood 

size was 5. The highest level of noise for which we tested was 

the case when there was an equal number of actual data 

instances in original clusters and noisy instances. At every noise 

level, RMNC (root map with neighbour cluster), KM++, 

GHPC, and Global Hubness-Proportional K-Means (GHPKM) 

were run 50 times each. 

The results for both parts of the data set are given in Table 1 

and Table 2.  

The Root Map and Neighbour Cluster (RMNC) is clearly 

outperformed GHPC, KM and other data-based methods. This 

shows that hubs can serve as good cluster center prototypes. 

 

 

TABLE 1 

 CLUSTERING QUALITY OF SILHOUETTE INDEX ON THE MISS-AMERICA DATA 

SET  

K 2 4 6 8 10 12 14 16 

RMNC 0.59 0.42 0.31 0.28 0.19 0.17 0.13 0.1 

GHPC 0.38 0.29 0.25 0.21 0.15 0.10 0.10 0.09 

KM++ 0.14 0.12 0.09 0.08 0.07 0.07 0.07 0.07 

GHPKM 0.28 0.18 0.17 0.14 0.13 0.11 0.10 0.08 

 

 
Fig.2: Clustering Quality of Silhouette Index. 

 
TABLE 2 

CLUSTERING QUALITY OF ISOLATION INDEX ON THE MISS-AMERICA DATA 

SET  

K 2 4 6 8 10 12 14 16 

RMN

C 

0.94 0.92 0.79 0.58 0.51 0.4

9 

0.3

6 

0.29 

GHP

C 

0.91 0.89 0.71 0.53 0.42 0.3
3 

0.3
0 

0.26 

KM+

+ 

0.62 0.46 0.34 0.23 0.19 0.1

6 

0.1

3 

0.12 

GHP

KM 

0.85 0.54 0.45 0.38 0.29 0.2

6 

0.2

4 

0.23 

 

   
 Fig. 3: Clustering Quality of Isolation Index. 

V. CONCLUSION 

The proposed method of RMNC method had proven to be 

more robust than the GHPKM and K-Means++ baseline on both 
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synthetic and real-world data, as well as in the presence of high 

levels of artificially introduced noise. The root map with 

neighbour clustering can easily be extended to incorporate 

additional pair-wise constrains such as requiring points with the 

same label to come into view in the same cluster with just an 

extra layer of function hubs. The model is flexible enough for 

information other than explicit constraints such as two points 

being in different clusters or even higher-order constraints (e.g., 

two of three points must be in the same cluster).  
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