Design and Implementation of Support Vector Based Classifier for Face Recognition
Abstract
Keywords
Full Text:
PDFReferences
W. Zhao, R. Chellappa, A. Rosenfield and P.J. Philips, “ Face Recognition: Literature Survey”, Technical Report TR4167, University of Maryland, USA, pp.399-458, Oct. 2008.
X. He and P. Niyogi. Locality preserving projections. In NIPS 16. 2003
Jiangfeng Chen ,Bo Li and Baozong Yuan , ”Face Recognition using direct LPP algoritrhm’ , ICSP 2008, 1457-1460
L. Sirovich and M. Kirby, “ Low Dimensional procedure for characterization of human faces” , Journal Optical Society of America , vol. 4, no. 3, March 1987, 519-524.
M. Turk and A. Pentland, “ Face Recognition and Eigenfaces” , in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Maui, Hawaii, pp. 586-591, Dec. 1991.
P.N. Belhumeur, J.P.Hespanha and D.J.Kriegman, “Eigenfaces vs Fisherfaces: using class specific linear projection” , in IEEE Transactions on pattern Analysis and machine Intelligence, vol. 19, pp. 711-720, may 1997.
Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273-297, .1995
C.J.C. Burges. A. tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, (2):121-167,1998.
B. Scholkopf and A.J. Smola. Learning .learning with kernels. MIT press, Cambridge, MA, 2002.
Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Vidit Jain, Amitabha Mukherjee. The Indian Face Database. http://vis-www.cs.umass.edu/~vidit/IndianFaceDatabase/, 2002.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.