Open Access Open Access  Restricted Access Subscription or Fee Access

Classification of Common Carotid Artery Images Using Segmentation and Rule Mining

S. Thenmozhi, L. Ashok kumar


Increase in Intima-media Thickness (IMT) of common carotid artery leads to atherosclerosis and stroke. Manual method for finding the interfaces between the intima and media layer is not accurate and it depends on the experience of the external observer. An improved dynamic programming (DP) segmentation technique for detecting the intima-media layer of the far wall of the common carotid artery (CCA) images using optimal search technique is proposed. The algorithm is developed considering the normalization and smoothing for estimating the intima media thickness (IMT) of the normal and abnormal subjects. The magnitudes of the IMT values have been used to explore the rate of prediction of blockage existing in the cerebrovascular and cardiovascular pathologies, and also hypertension and atherosclerosis. Retrieving images from large databases becomes a difficult task. Here after finding out the IMT by segmentation, the results are entered into transaction database. Association rule mining is done in order to retrieve the images related to the query image i.e. to find out images related to the given patients image.


B-Mode Ultrasound (US) Image, Common Carotid Artery, Intima Media Thickness, Association Rules, Dynamic Programming.

Full Text:



Abolmaesumi, P., Sirouspour, M. R., Salcudean, S. E., (2000) “Realtime extraction of carotid artery contours from ultrasound images”, Comput Based Med Syst 181–186.

Bots, M. L., Baldassarre, D., Simon, A., de Groot, E., O’Leary, D. H., Riley, W., Kastelein, J .J., Grobbee, D.E (2007) “Carotid intimamedia thickness and coronary atherosclerosis: weak or strong relations?” Eur. Heart J. 28(4), 398–406.

Bottalico, M. A., Starita, A., (2000) “EcoStudio: a computer tool to support carotid ultrasound images analysis”, IEEE Eng Med Biol 4:2428–2430

Chan, R. C., Khaufhold, J., Hemphill, L. C., Lees, R.S., Karl, W. C., (2000) “Anisotropic edge-preserving smoothing in carotid B-mode ultrasound for improved segmentation and intima-media thickness(IMT) measurement”, Comput Cardiol 27:37–40.

Chen, Y., Medioni, G. (1995) “Description of complex objects from multiple range images”, IEEE Comput Vision Imag Underst 61(3): 325–334

Cheng, D., Schmidt-Trucksass, A., Cheng, K., Burkhardt, H. (2002) “Using snakes to detect the intimal and adventitial layers of the common carotid artery wall in sonographic images”, Comput Methods Programs Biomed 67:27–37

Gariepy, J., Massonneau, M., Levenson, J., Heudes, D., and Simon, A., and the Groupe de Prevention Cardio-vasculaire en Medecine du Travail, (1993)“Evidence for in vivo carotid and femoral wall thickness in human hypertension,” Hypertension, vol. 22, no. 1, pp. 111–118.

Haddon, J. F, Boyce, J. F, (1990) “Image segmentation by unifying region and boundary information”, IEEE Trans Pattern Anal Mach Intell 12(10):929–948

Hallerstam, S., Larsson, P. T., Zuber, E., Rosfors, S (2004) “Carotid atherosclerosis is correlated with extent and severity of coronary Artery”, Angiology 55, 281–288

Jain, A. K. (1989) “Fundamentals of Digital Image Processing”, Prentice-Hall, Englewood Cliffs.

Jegelevicius, D., Lukosevicius, A. (2002) “Ultrasonic measurements of human carotid artery wall intima-media thickness”, Ultragarsas 43–47.

Kasliwal, R. R., Bansal, M., Gupta, H., Agrawal, S (2007) “Association of carotid intima-media thickness with left main coronary artery disease”, Indian Heart J. 59, 50–55.

Kozick, R. J., (1996) “Detectinh interfaces on ultrasound images of the carotid artery by dynamic programming,” SPIE, vol. 2666, pp. 233–241.

Liang, Q., Wendelhag, L., Wikstr and, J., Gustavsson, T (2000) “A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images” IEEE Trans. Med. Imaging 19, 127–142.

Lo, J., Dolan, S.E., Jenna, R., Kanter, B.A., Hemphill, L.C., Connelly, J.M., Lees, R.S., Grinspoon, S. (2006) “Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women”, J. Clin. Endocrinol. Metab. 91(5), 1677–1682.

Loizou, C.P., Pattichis, C.S., Pantziaris, M., Tyllis, T., Nicolaides , A. (2007) “Snakes based segmentation of the common carotid artery intima media”, Med Biolo Eng Comput 45(1):35–49.

Mao, F., Gill, J., Downey, D., Fenster , A. (2000) “Segmentation of carotid artery in ultrasound images: method development and evaluation technique”, Med Phys 27(8):1961–1970.

Pignoli, P., Tremoli, E., Poli, A., Paoletti, R. (1986) “Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging”, Circulation 74, 1399–1406.

Polat K., Latifoglu F., Kara S., Gunes S. (2008) “Usage of a novel, similarity-based weighting method to diagnose atherosclerosis from carotid artery Doppler signals”, Med Biol Eng Comput 46(4):353–362.

Salonen, J.T., Salonen, R. (1993) “Ultrasound B-mode imaging in observational studies of atherosclerotic progression”, Circulation 87(suppl.II), 1156–1165.

Santhiyakumari, N., Madheswaran, M. (2006) “Estimation of layer thickness of arterio carotis using Dynamic Programming Procedure”, In: Proc. 3rd Cairo International Biomedical Engineering Conference EI cairo, Egypt.

Santhiyakumari. N, Rajendran. P, Madheswaran M (2010) “Medical decision-making system of ultrasound carotid artery intima–media thickness using neural networks”, J Digit Imaging. doi: 10.1007/s10278-010-9356-8. Published Online First, 23 December 2010.

Selzer, R. H., Hodis, H. N., Kwong-Fu, H., Mack, W. J., Lee, P. L., Liu, C.R., Liu, C.H (1994) “Evaluation of computerized edge tracking for quantifying intima-media thickness of the common carotid artery from B-mode ultrasound images. Atherosclerosis”, 111, 1–11.

Touboul, P.-J (2002) “Clinical impact of intima media measurement”, Eur. J. Ultrasound 16, 105–113.

Touboul, P.J., Prati, P., Scarab, P.Y., Adrai, V., Thibout, E., Ducimetiere, P.(1992) “ Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging”, J. Hypertension 10(suppl. 5), S37–S41.

Weeks, A.R. Jr. (2005) “Fundamentals of Electronic image processing”, Prentice-Hall, India.

Zhang Y.J., (1996) “A survey on evaluation methods for image Segmentation”, Pattern Recognition 29:1335–1346.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.