Open Access Open Access  Restricted Access Subscription or Fee Access

Medical Image Fusion using NSCT and Spatial Fuzzy Segmentation

K. Anees Barvin, M. Anitha

Abstract


Medical image fusion is the tool for the clinical applications. For medical diagnosis, the edges and outlines of the interested objects is more important than other information. Therefore, how to preserve the edge-like features is worthy of investigating for medical image fusion. As we know, the image with higher contrast contains more edge-like features. In terms of this view, this paper proposed a new medical image fusion scheme based on Non Subsampled Contourlet Transform (NSCT) and pixel level fusion rule, which is useful to provide more details about edges at curves. It is used to improve the edge information of fused image by reducing the distortion. This transformation will decompose the image into finer and coarser details and finest details will be decomposed into different resolution in different orientation. The pixel level fusion rule will be applied and low frequency and high frequency coefficients are selected, in these fusion rule we are following Gabor filter bank and Gradient based fusion algorithm. The fused contourlet coefficients are reconstructed by Inverse Non Subsampled Contourlet Transformation (NSCT).The goal of image fusion is to obtain useful complementary information from CT/MRI multimodality images. By this method we can get more complementary information and also Better correlation coefficient, PSNR (Peak-Signal-to-Noise Ratio) and less MSE (Mean square error). The fused image structure segmentation and its analysis will be performed using spatial fuzzy clustering algorithm. This method is proposed to segment normal tissues and abnormal tissues from fused images automatically. Finally results will be presented as segmented tissues with parameter evaluation to show algorithm efficiency.

Keywords


Non Subsampled Contourlet Transform (NSCT), Multimodal Medical Image Fusion, Pixel Level Fusion, Gabor Filter Bank, Spatial Fuzzy Segmentation.

Full Text:

PDF

References


Gaurav Bhatnagar , Q.M. Jonathan Wu and Zheng Liu," Directive Contrast Based Multimodal Medical Image Fusion in NSCT Domain" IEEE Trans .Multimedia, vol. 15, no. 5, aug. 2013.

F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proc. IEEE, vol. 91, no. 10,pp.1699–1721, Oct. 2003.

G. Bhatnagar, Q. M. J. Wu, and B. Raman, “Real time human Visual System based framework for image fusion,” in Proc. Int. Conf.Signal and Image Processing,Trois-Rivieres, Quebec, Canada, 2010,pp.71– 78.

A. Cardinali and G. P. Nason, “A statistical multiscale approach to image segmentation and fusion,” in Proc. Int. Conf. Information Fusion, Philadelphia, PA, USA, 2005, pp. 475–482.

P. S. Chavez and A. Y. Kwarteng, “Extracting spectral contrast In Landsat thematic mapper image data using selective principal Component analysis,” Photogrammetric Eng. Remote Sens., vol. 55, pp.339–348, 1989.

A.Toet, L. V. Ruyven, and J. Velaton, “Merging thermal and Visual Images by a contrast pyramid,” Opt. Eng., vol. 28, no. 7, pp. 789 792, 1989.

V.S.Petrovic and C. S. Xydeas, “Gradient-based multi resolution image fusion, ” IEEE Trans. Image Process., vol. 13, no. 2, pp. 228–237, Feb. 2004. [8] A. Toet, “Hierarchical image fusion, " Mach. Vision Appl.,vol. 3, no.1, pp. 1–11, 1990.

X. Qu, J. Yan, H. Xiao, and Z. Zhu, “Image fusion algorithm based on s patial frequency-motivated pulse coupled neural networks in non subsampledcontourlet transform domain,” Acta Automatica Sinica, vol.34, no. 12, pp. 1508–1514, 2008.

G. Bhatnagar and B. Raman, “A new image fusion technique Based On directive contrast,” Electron. Lett. Comput. Vision Image Anal., vol. 8,no. 2, pp. 18–38, 2009.

Q. Zhang and B. L. Guo, “Multi focus image fusion using the Non subsampledcontourlet transform,” Signal Process., vol. 89, no. 7, pp.1334–1346, 2009.

Y. Chai, H. Li, and X. Zhang, “Multi focus image fusion based on features contrast of multiscale products in non subsampled contourlet transform domain,” Optik, vol. 123, pp. 569– 581, 2012.

G. Bhatnagar and Q. M. J. Wu, “An image fusion framework based on human visual system in framelet domain,” Int.J. Wavelets, Multires.,Inf. Process., vol. 10, no. 1, pp. 12500021– 30, 2012.

S. Yang, M. Wang, L. Jiao, R. Wu, and Z. Wang, “Image fusion based On a new contourlet packet,” Inf. Fusion, vol. 11, no. 2, pp. 78– 84,2010.

Q. Miao, C. Shi, P. Xu, M. Yang, and Y. Shi, “A novel algorithm of image fusion using shearlets,” Opt. Commun., vol. 284, no. 6, pp.1540– 1547, 2011.

S. Li, B. Yang, and J. Hu, “Performance comparison of different multi resolution transforms for image fusion,” Inf. Fusion, vol. 12, no. 2,pp.74–84, 2011.

R. Redondo, F. Sroubek, S. Fischer, and G. Cristobal, “Multi focus image fusion using the log-Gabor transform and a multi size windows technique,” Inf. Fusion, vol. 10, no. 2, pp. 163–171, 2009.

S. Yang, M. Wang, Y. Lu, W. Qi, and L. Jiao, “Fusion of multi parametric SAR images based on SW-non subsampled contourlet and PCNN, ” Signal Process., vol. 89, no. 12, pp. 2596–2608, 2009.

Y. Chai, H. Li, and X. Zhang, “Multi focus image fusion based on Features contrast of multiscale products in non sub sampled contourlet transform domain,” Optik—Int. J. Light Electron Opt., vol.123, no. 7,pp. 569–581, 2012.

Q.Guihong, Z. Dali, and Y.Pingfan, “Medical image fusion by wavelet transform modulus maxima,” Opt. Express, vol. 9, pp. 184–190, 2001.

V. Barra and J. Y. Boire, “A general framework for the fusion of anatomical and functional medical images,” Neuro Image, vol. 13, no.3, pp. 410–424, 2001.

L. Yang, B. L. Guo, and W. Ni, “Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform,” Neurocomputing,vol. 72, pp. 203–211, 2008.

F. E. Ali, I. M. El-Dokany, A. A. Saad, and F. E. Abd El Samie , “Curvelet fusion of MR and CT images,” Progr. Electromagn. Res. C, vol. 3, pp. 215–224, 2008.

N. Boussion, M. Hatt, F. Lamare, C. C. L. Rest, and D. Visvikis , “Contrast enhancement in emission tomography by way of synergistic PET/CT image combination,” Comput. Meth.Programs Biomed., vol.90, no. 3, pp. 191–201, 2008.

S. Daneshvar and H. Ghassemian, “MRI and PET image fusion by Combining IHS and retina-inspired models,” Inf. Fusion, vol.11, no.2, pp. 114–123, 2010.

Y.Yang, D. S. Park, S.Huang, and N. Rao, “Medical image fusion via an effective wavelet-based approach,” EURASIP J. Adv. Signal Process. vol. 2010, pp. 44-1–44-13, 2010.

Y.Yang, D. S.Park, S.Huang, and N. Rao, “Medical image fusion Via an effective wavelet-based approach,” EURASIP J. Adv. Signal Process., vol. 2010, pp. 44-1–44-13, 2010.

S. Das, M. Chowdhury, and M. K. Kundu, “Medical image fusion based on ripplet transform type-I,” Progr. Electromagn. Res. B, vol.30, pp. 355–370, 2011.

T. Li and Y.Wang, “Biological image fusion using a NSCT based variable-weight method,” Inf. Fusion, vol. 12, no. 2, pp. 85–92, 2011.

A. L. da Cunha, J. Zhou, and M. N. Do, “The non subsampled Contourlet transform: Theory, design, and applications,” IEEE Trans.Image Process., vol. 15, no. 10, pp. 3089–3101, Oct. 2006.

P. Kovesi, “Image features from phase congruency,” Videre: J.Comput. Vision Res., vol. 1, no. 3, pp. 2–26, 1999.

Ardizzone. E, Pirron e. and Orazio.O.G, "Fuzzy C-Means Segmentation on Brain MR Slices Corrupted by RF- Inhomogeneity,” In Proc. The 7th international workshop on Fuzzy Logic and Applications: Applications of Fuzzy Sets Theory, WILF '07, Springer- Verlag, pp: 378-384, 2007.

Bianrgi.P.M, Ashtiyani.M, and Asadi.S, "MRI Segmenttation Using Fuzzy C-means Clustering Algorithm Basis Neural Network,” In Proc. ICTTA 3rd International Conference on Information and Communication Technologies: From Theory Applications, pp: 1-5, 2008.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.