Open Access Open Access  Restricted Access Subscription or Fee Access

The Switching Fractional Order Chaotic System and Image Encryption and Decryption

R. Vanitha, P. Mohana, T. Mohana Priyadharshini, N. Nanthitha Varshini, N. Sindhuja

Abstract


Secure communication is the one of the main issue we are facing in this modern technology. Fractional order chaotic system has implemented for secure communication, however switching fractional order chaotic system has been not implemented for image encryption yet. So in this project we implemented image encryption by using new fractional chaotic system. It consists of fractional order chen system and other two fractional chaotic system. So for secure communication image has been encrypted using exclusive or Xor algorithm in this project. Secret key will be generated in different manner for each encryption randomly. This encryption technique increase the randomness and improve the speed of encryption.


Keywords


Fractional Order Chaotic System, Image Encryption and Decryption, Chaos Matrix, Histogram Equalization, Xor Swapping Algorithm

Full Text:

PDF

References


The Switching Fractional Order Chaotic System and Its Application to Image Encryption JialinHou, Rui Xi, Ping Liu, and Tianliang Liu VOL. 4, NO. 2, APRIL 2017 381

L. Y. Wang, H. J. Song, and P. Liu, “A novel hybrid color image encryption algorithm using two complex chaotic systems,” Opt. Lasers Eng., vol. 77, pp. 118¡125, Feb. 2016.

X. Y. Wang, L. Teng, and X. Qin, “A novel colour image encryption algorithm based on chaos,” Signal Process. vol. 92, no. 4, pp. 1101¡1108, Apr. 2012.

X. Y. Wang and M. J. Wang, “A hyperchaos generated from Lorenz system,” Phys. A: Statist. Mech. Appl., vol. 387, no. 14, pp. 3751¡3758, Jun. 2008.

Y. G. Zhang, J. Y. Yang, K. C. Wang, Z. P. Wang, and Y. D. Wang, “Improved wind prediction based on the Lorenz system,” Renew. Energy, vol. 81, pp. 219¡226, Sep. 2015.

X. X. Liao, H. G. Luo, G. Zhang, J. G. Jian, X. J. Zong, and B. J. Xu, “New results on global synchronization of Chua’s circuit,” Acta Automat. Sin, vol. 31, no. 2, pp. 320¡326, Mar. 2005.

H. P. Hu, L. F. Liu, and N. D. Ding, “Pseudorandom sequence generator based on the Chen chaotic system,” Comp. Phys. Commun., vol. 184, no. 3, pp. 765¡768, Mar. 2013.

N. Smaoui, A. Karouma, and M. Zribi, “Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems,” Commun. Nonlinear Sci. Numer.Simul., vol. 16, no. 8, pp. 3279¡3293, Aug. 2011.

Y. J. Liu and G. P. Pang, “The basin of attraction of the Liu system,” Commun. Nonlinear Sci. Numer.Simul., vol. 16, no. 4, pp. 2065¡2071, Apr. 2011.

Y. K. Li, “The stability of hybrid Liu chaotic system with a sort of oscillating parameters under impulsive control,” Phys. Proc., vol. 24, pp. 490¡495, Dec. 2012.

A. E. Matouk, “Dynamical analysis, feedback control and synchronization of Liu dynamical system,” Nonlin. Anal.: Theory Meth. Appl., vol. 69, no. 10, pp. 3213¡3224, Nov. 2008.

A. Algaba, F. Fern´ andez-S´anchez, M. Merino, and A. J. Rodr´ıguez-Luis,“Centers on center manifolds in the Lorenz, Chen and L¨u systems,” Commun.Nonlinear Sci. Numer.Simul., vol. 19, no. 4, pp. 772¡775, Apr. 2014.

G. A. Leonov and N. V. Kuznetsov, “On differences and similarities in the analysis of Lorenz, Chen, and Lu systems,” Appl. Math. Comput, vol. 256, pp. 334¡343, Apr. 2015.

A. Algaba, F. Fern´andez-S´anchez, M. Merino, and A. J. Rodr´ıguez-Luis, “The L¨u system is a particular case of the Lorenz system,” Phys. Lett. A, vol. 377, no. 39, pp. 2771¡2776, Nov. 2013.

J. W. Wang, X. H. Xiong, and Y. B. Zhang, “Extending synchronizationscheme to chaotic fractional-order Chen systems,” Phys. A: Statist.Mech. Appl., vol. 370, no. 2, pp. 279¡285, Oct. 2006.

A. S. Hegazi and A. E. Matouk, “Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system,” Appl. Math. Lett., vol. 24, no. 11, pp. 1938¡1944, Nov. 2011.

M. M. Asheghan, M. T. H. Beheshti, and M. S. Tavazoei, “Robust synchronization of perturbed Chen’s fractional-order chaotic systems,” Commun. Nonlinear Sci. Numer.Simul., vol. 16, no. 2, pp. 1044¡1051, Feb. 2011.

J. F. Zhao, S. Y. Wang, Y. X. Chang, and X. F. Li, “A novel image encryption scheme based on an improper fractional-order chaotic system,” Nonlinear Dyn., vol. 80, no. 4, pp. 1721¡1729, Jun. 2015.

A. S. Hegazi, E. Ahmed, and A. E. Matouk, “On chaos control and synchronization of the commensurate fractional order Liu system,” Commun. Nonlinear Sci. Numer.Simul., vol. 18, no. 5, pp. 1193¡1202, May 2013.

T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua’s system,” IEEE Trans. Circ. Syst.-I: Fund. Theory Appl., vol. 42, no. 8, pp. 485¡490, Aug. 1995.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.