Empirical Study on Error Correcting Output Code Based on Multiclass Classification
Abstract
Keywords
Full Text:
PDFReferences
K. Crammer and Y. Singer, ―On the Learnability and Design of Output Codes for Multiclass Problems,‖ Machine Learning, vol. 47, no. 2-3, pp. 201-233, 2002.
A. Passerini, M. Pontil, and P. Frasconi, ―New Results on Error Correcting Codes of Kernel Machines,‖ IEEE Trans. Neural Networks, vol. 15, no. 1,pp. 45-54, 2004.
V.N. Vapnik, The Nature of Statistical Learning Theory. Springer 1995.
Y. Freund and R.E. Shapire, ―A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,‖ J. Computer and System Sciences, vol. 55,no. 1, pp. 119-139, 1997.
T. Hastie and R. Tibshirani, ―Classification by Pairwise Coupling,‖ Annals of Statistics, vol. 26, no. 2, pp. 451- 471, 1998.
E.L Allwein, R.E Shapire, and Y. Singer, ―Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers,‖ J. Machine Learning Research, vol. 1, pp. 113-141, 2000.
T.G. Dietterich and G. Bakiri, ―Solving Multiclass Learning Problems via Error-Correcting Output Codes‖ J. Artificial Intelligence Research, vol. 2, pp. 263-286,1995.
R.E. Schapire, ―Using Output Codes to Boost Multiclass Learning Problems,‖ Machine Learning: Proc. 14th Int’l Conf., pp. 313-321, 1997.
C. Hsu and C. Lin, ―A Comparison of Methods for Multi-Class Support Vector Machines,‖ IEEE Trans. Neural Networks,vol. 13, no. 2, pp. 415-425, Mar.2002.
N. Garc´ıa-Pedrajas and C. Fyfe. Evolving output code for multiclass problems. IEEE Trans. Evolutionary Computation, 12(1):93–106, 2008.
R. Ghaderi and T.Windeatt. Circular ecoc: A theoretical and experimental analysis. In ICPR, pages 2203–2206, 2000.
O. Pujol and P. Radeva. Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes. PAMI, 28(6):1007–1012, 2006.
R. Schapir and Y. Singer. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.
Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2008.
K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems. Machine Learning, 47(2-3):201–233, 2002.
N.J. Nilsson, Learning Machines. McGraw-Hill, 1965.
T. Hastie and R. Tibshirani, ―Classification by Pairwise Grouping,‖ Proc. Neural Information Processing Systems Conf., vol. 26,pp. 451-471, 1998.
O. Pujol, S. Escalera, and P. Radeva, ―An Incremental Node Embedding Technique for Error Correcting Output Codes,‖Pattern Recognition, to appear.
S. Escalera, O. Pujol, and P. Radeva, ―Boosted Landmarks of Contextual Descriptors and Forest-ECOC: A Novel Framework to Detect and Classify Objects in Clutter Scenes,‖ Pattern Recognition Letters, vol. 28, no. 13, pp. 1759-1768, 2007.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.