Enhancing HiveQL Engine Using Map-Join-Reduce
Abstract
Keywords
Full Text:
PDFReferences
―MAP-JOIN-REDUCE: Toward Scalable and Efficient Data Analysis on Large Clusters‖Dawei Jiang, Anthony K. H. Tung, and Gang Chen. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011
―A Comparison of Join Algorithms for Log Processing in MapReduce‖, Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, Yuanyuan Tian, SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA. Copyright 2010 ACM 978-1-4503-0032-2/10/06.
―Optimizing Joins in a Map-Reduce Environment‖, Foto N. Afrati, Jeffrey D. Ullman, ACM. EDBT 2010, March 22-26, 20010
―Graph Twiddling in a MapReduce World‖, Jonathan Cohen,IEEE July/August 2009
www.facebook.com, Join Optimization in Apache Hive by Liyin Tang
http://www.cloudera.com/content/cloudera/en/why-cloudera/hadoop-and-big-data.html
http://blog.cloudera.com/blog/category/hive
http://hadoop.apache.org/
http://hive.apache.org/
Hadoop in Action, Chuck Lam, Volume 1
http://developer.yahoo.com/hadoop/blogs
https://issues.apache.org/jira
http://blog.cloudera.com/blog
http://blog.cloudera.com/blog/category/mapreduce
http://www.cloudera.com/content/dam/cloudera/documents/Using-Cloudera-to-Improve-Data-Processing_WP_2012-09.pdf
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.