Domain-Driven Action Able Knowledge Discovery
Abstract
Keywords
Full Text:
PDFReferences
Cao, L., and Zhang, C ―.Domain-driven data mining: A practical Methodology, International Journal of Data Warehousing and Mining ― (IJDWM), IGI Global, 2(4): 49-65, 2006.
Cao, L., Yu, P., Zhang, C., Zhao, Y., Williams, G.: DDDM2007: Domain Driven Data Mining, ACM SIGKDD Explorations Newsletter, 9(2): 84-86, 2007.
Cao, L., Zhang, C.: Knowledge Actionability: Satisfying Technical and Business Interestingness, International Journal of Business Intelligence and Data Mining, 2(4): 496-514, 2007.
Cao, L., Zhang, C.: The Evolution of KDD: Towards Domain-Driven Data Mining, International Journal of Pattern Recognition and Artificial Intelligence, 21(4): 677-692, 2007.
Cao, L.: Domain-Driven Actionable Knowledge Discovery, IEEE Intelligent Systems, 22(4): 78-89, 2007.
Cao, L., Zhao, Y., Zhang, C. (2008), Mining Impact- Targeted Activity Patterns in Imbalanced Data, IEEE Trans. Knowledge and Data Engineering, IEEE, , Vol. 20, No. 8, pp. 1053-1066, 2008.
Cao, L., Dai, R., Zhou, M.: Metasynthesis, M-Space and M-Interaction for Open Complex Giant Systems, technical report, 2008.
Cao, L. Yu, P.S., Zhang, C., Zhang, H. Data Mining for Business Applications, Springer, 2008.
Cao, L. and Lu, Y. Market Microstructure Patterns Powering Trading and Surveillance Agents. Journal of Universal Computer Sciences, 2008 .
Cao, L. and He, T. ―Developing actionable trading agents, Knowledge and Information Systems: An International Journal.
Cao,L. Developing Actionable Trading Strategies, in edited book: Intelligent. Agents in the Evolution of WEB and Applications, Springer.
Cao, L., Zhang, H., Zhao, Y., Zhang, C. Combined Mining for More Informative Knowledge in e-Government Services, technical report, 2008.
Cao, L. Introduction to Domain Driven Data Mining, Data Mining for Business Applications (Edited Book), Springer, 2008.
Cao, L.‖ Actionable Knowledge Discovery, Encyclopedia of Information Science and Technology‖, Second Ed., IGI Global publications, 2008.
Cao, L. Yu, P.S., Zhang, and C., Zhao, Y. Domain Driven Data Mining, Springer, 2009.
L. Cao, Y. Zhao, H. Zhang, D. Luo, and C. Zhang, ―Flexible Frameworks for Actionable Knowledge Discovery,‖ IEEE Trans. Data and Knowledge Eng, preprint, 4 June 2009, doi: 10.1109/ TKDE.2009.143.
G. Dong and L. Li, ―Efficient Mining of Emerging Patterns: Discovering rends and Differences,‖ Proc. Int’l Conf. Knowledge Discovery and Data Mining (KDD ’99), pp. 43-52, 1999.
U. Fayyad, G. Shapiro, and R. Uthurusamy, ―Summary from the KDD-03 Panel—Data Mining: The Next 10 Years,‖ ACM SIGKDD Explorations Newsletter, vol. 5, no. 2, pp. 191-196, 2003.
U. Fayyad and P. Smyth, ―From Data Mining to Knowledge Discovery: An Overview,‖ Advances in Knowledge Discovery and Data Mining, U .Fayyad and P. Smyth, eds., pp. 1-34, 1996.
A. Freitas, ―On Objective Measures of Rule Surprisingness,‖ Proc.European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD) (’98), pp. 1-9, 1998.
H. Kargupta, B. Park, D. Hershberger, and E. Johnson, ―Collective Data Mining: A New Perspective toward Distributed Data mining,‖ Advances in Distributed and Parallel Knowledge Discovery‖, MIT/AAAI Press, 2000.
J. Kleinberg, C. Papadimitriou, and P. Raghavan, ―A Microeconomic View of Data Mining,‖, Data Mining and Knowledge Discovery, vol. 2, no. 4, pp. 311-324, 1998
R. Hilderman and H. Hamilton, ―Applying Objective Interestingness Measures in Data Mining Systems,‖ Proc. European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD ’00), pp. 432-439, 2000.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.