A Phenomenal Measurement Used for Congregation of Informations
Abstract
Keywords
Full Text:
PDFReferences
A. Asuncion and D. J. Newman, UCI Machine Learning Repository Irvine, CA: University of California, School of Information and Computer Science, 2013.
A. K. Jain, M. N. Murty and P. J. Flynn, “Data Clustering: A review”,ACM Computing Surveys, vol. 31, no. 3, 1999.
A. Rakhlin and A. Caponnetto, “Stability of K-Means clustering”, Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2007, pp. 216–222.
A. Rui and J. M. C. Sousa, “Comparison of fuzzy clustering algorithms for Classification”, International Symposium on Evolving Fuzzy Systems, 2006, pp. 112-117.
J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms”, New York: Plenum Press, 1981.
J. Han and M. Kamber, “Data Mining: Concepts and Techniques”,Morgan Kaufmann Publishers, 2nd ed., New Delhi, 2006.
L. Hui, “Method of image segmentation on high-resolution image and classification for land covers”, Fourth International Conference on Natural Computation, vol. 5, 2008, pp. 563-566.
Mathworks. http: //www.mathworks.com
R. Mosley, “The Use of Predictive Modeling in the Insurance Industry”, Pinnacle actuarial resources, 2005.
E. Cox, Fuzzy Modeling And Genetic Algorithms For Data Mining And Exploration, Elsevier, 2005
G. J Klir, T A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall,1988
J Han, M Kamber, Data Mining Concepts and Techniques ,Elsevier, 2003
J.C.Bezdek, Fuzzy Mathematics in Pattern Classification, Ph.D. Thesis, Center for Applied Mathematics, Cornell University, Ithica, N.Y., 1973.
Carl G. Looney, “A Fuzzy Clustering and Fuzzy MergingAlgorithm”,http://citeseer.ist.psu.edu/399498.html
Frank Klawonn, Anette Keller, “Fuzzy Clustering Based on ModifiedDistance Measures”
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.