Scalable Recommendation System with MapReduce
Abstract
Keywords
Full Text:
PDFReferences
K. Ali and W. van Stam. Tivo: Making showrecommendations using a distributed collaborative filtering architecture. KDD, 2004.
A. S. Das, M. Datar, A. Garg, and S. Rajaram.Google news personalization: scalable online collaborative filtering. WWW, pp. 271-280, 2007.
J. Davidson, B. Liebald, J. Liu, P. Nandy,T. Van Vleet, U. Gargi, S. Gupta,Y.He, M. Lambert,B. Livingston, and D. Sampath. The youtube video recommendation system. RecSys, pp. 293-296, 2010.
D. DeWitt, R. Gerber, G. Graefe, M. Heytens,K. Kumar, and M. Muralikrishna.GAMMA - a high performance dataow database machine. VLDB, pp. 228-237, 1986.
M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T.Riedl. Rethinking the recommender research ecosystem: reproducibility, openness, and lenskit.RecSys, pp. 133-140, 2011.
S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system software of a parallel relationaldatabase machine GRACE. VLDB, pp. 209-219, 1986.
7. Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Mymedialite: a free recommendersystem library. RecSys, pp. 305-308, 2011.
8. R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismannis.Large-scale matrix factorization with distributedstochastic gradient descent. KDD, pp. 69-77, 2011.
M. Jamali and M. Ester. Trustwalker: a random walkmodel for combining trust-based and item-basedrecommendation. KDD, pp. 397-406, 2009.
Sebastian Schelter, Christoph Boden, Volker Markl. Scalable Similarity-Based neighborhood Methods with MapReduce.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.