A Modeling Approach for Datamining and Predictive Modeling Decision Tree Ensembles
Abstract
Keywords
Full Text:
PDFReferences
Amit, Y. and D.Geman. 1996,1997. “Shape uantization and Recognition with Randomized Trees.” Neural Computation 9:1545-1588.
Berry, M., J., A., & Linoff, G., S., (2000). Mastering data mining. New York:Wiley.
Breiman,L. 1996. “Bagging Predictors.” Machine Learning 24(2):123-140.
Breiman, L. 1998. “Arcing Classifiers.” The Annals of Statistics 26(3):801-849.
Breiman, L. 2001. “Random Forests.” Machine Learning 45(1):5-32.
Edelstein, H., A. (1999). Introduction to data mining and knowledge discovery (3rd ed). Potomac, MD: Two Crows Corp.
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in knowledge discovery & data mining. Cambridge, MA: MIT Press.
Freund, Y. and R. E. Schapire. 1995. “A Decision-theoretic Generalization of On-line Learning and an Application to Boosting.” Barcelona, Spain. pp. 23-37.
Han, J., Kamber, M. (2000). Data mining: Concepts and Techniques. New York: Morgan-Kaufman.
Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning : Data mining, inference, and prediction. New York: Springer.
Pregibon, D. (1997). Data Mining. Statistical Computing and Graphics, 7, 8.
Weiss, S. M., & Indurkhya, N. (1997). Predictive data mining: A practical guide. New York: Morgan-Kaufman.
Westphal, C., Blaxton, T. (1998). Data mining solutions. New York: Wiley.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.