Affinity Propagation Clustering with Background Knowledge using Pair Wise Constraints
Abstract
Keywords
Full Text:
PDFReferences
B. Kulis, S. Basu, I. Dhillon, and R. Mooney, ―Semi-Supervised Graph Clustering: A Kernel Approach,‖ Proc. Int’l Conf. Machine Learning, pp. 457-464, 2005.
M. Ester, R. Ge, B.J. Gao, Z. Hu, and B. Ben-Moshe, ―Joint Cluster Analysis of Attribute Data and Relationship Data: The Connected
K-Center Problem,‖ Proc. SIAM Int’l Conf. Data Mining, pp. 25-46, 2006.
E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell, ―Distance Metric Learning with Application to Clustering with Side-Information,‖ Advances in Neural Information Processing Systems, vol. 15, pp. 521-528, 2003.
S.C.H. Hoi, W. Liu, M.R. Lyu, and W.Y. Ma, ―Learning Distance Metrics with Contextual Constraints for Image Retrieval,‖ Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 2072- 2078, 2006.
M. Bilenko, S. Basu, and R.J. Mooney, ―Integrating Constraints and Metric Learning in Semi-Supervised Clustering,‖ Proc. Int’l Conf. Machine Learning, pp. 81-88, 2004.
K. Wagstaff, C. Cardie, and S. Schroedl, ―Constrained K-Means Clustering with Background Knowledge,‖ Proc. Int’l Conf. Machine Learning, pp. 577-584, 2001.
Hong Zeng, and Yiu-Ming Cheung, ―Semi supervised maximum margin clustering with pairwise constraints‖ ,2012.
Z. Lu and M.A. Carreira-Perpinan, ―Constrained Spectral Clustering through Affinity Propagation,‖ Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8, 2008.
L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, ―Maximum Margin Clustering,‖ Advances in Neural Information Processing Systems, vol. 17, pp. 1537-1544, 2005.
H. Valizadegan and R. Jin, ―Generalized Maximum Margin Clustering and Unsupervised Kernel Learning,‖ Advances in Neural Information Processing Systems, vol. 19, pp. 1417-1424, 2007.
Y.F. Li, I.W. Tsang, J.T. Kwok, and Z.H. Zhou, ―Tighter and Convex Maximum Margin Clustering,‖ Proc. Int’l Conf. Artificial Intelligence and Statistics, pp. 344-351, 2009.
Y. Hu, J. Wang, N. Yu, and X.S. Hua, ―Maximum Margin Clustering with Pairwise Constraints,‖ Proc. IEEE Int’l Conf. Data Mining, pp. 253-262, 2008.
N. Nguyen and R. Caruana, ―Improving Classification with PairwiseConstraints: A Margin-Based Approach,‖ Proc. European Conf. Machine Learning and Knowledge Discovery in Databases,pp. 113-124, 2008.
K. Weinberger, J. Blitzer, and L. Saul, ―Distance Metric Learning for Large Margin Nearest Neighbor Classification,‖ Advances in Neural Information Processing Systems, vol. 18, pp. 1473-1480, 2006.
A. Strehl and J. Ghosh, ―Cluster Ensembles-A Knowledge Reuse Framework for Combining Multiple Partitions,‖ J. Machine Learning Research, vol. 3, pp. 583-617, 2003.
N. Shental, T. Hertz, D. Weinshall, and M. Pavel, ―Adjustment Learning and Relevant Component Analysis,‖ Proc. European Conf.Computer Vision, pp. 776-792 , 2002.
S. Basu, M. Bilenko, and R.J. Mooney, ―A Probabilistic Framework for Semi-Supervised Clustering,‖ Proc. ACM SIGKDD Int’l Conf.Knowledge Discovery and Data Mining, pp. 59-68, 2004.
N. Kumar and K. Kummamuru, Semi supervised Clustering with Metric Learning Using Relative Comparisons,‖ IEEE Trans. Knowledge and Data Eng., vol. 20, no. 4, pp. 496-503, Apr. 2008.
K. Zhang, I.W. Tsang, and J.T. Kwok, ―Maximum Margin Clustering Made Practical,‖ Proc. Int’l Conf. Machine Learning, pp. 1119-1126, 2007.
S.C.H. Hoi, R. Jin, and M.R. Lyu, ―Learning Nonparametric Kernel Matrices from Pairwise Constraints,‖ Proc. Int’l Conf. Machine Learning, pp. 361-368, 2007.
C. Domeniconi and D. Gunopulos. Adaptive nearest neighbor classification using support vector
Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equivalence relations. In: Proceedings of the 20th International Conferenceon Machine Learning. (2003)
Cohn, D., Caruana, RMc Callum, A.: Semi-supervised clustering with user feed-back. In: Cornell University Technical Report TR2003-1892. (2003)
Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of 21th International Conference on Machine Learning. (2004)
Bellot, P., & El-Beze, M. (1999). A clustering method for information retrieval (Technical Report IR-0199). Laboratoire d'Informatique d'Avignon,France.
Cardie, C. (1993). A case-based approach to knowledge acquisition for domain-speci_csentence analysis.Proceedings of the Eleventh National Conference on Arti_cial Intelligence (pp. 798{803). Washington,DC: AAAI Press / MIT Press.
T. Joachims, ―Training Linear SVMs in Linear Time,‖ Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 217-226, 2006.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.