

High Speed Parallel Butterfly Architecture for Computing Circular Convolution Based on FNT Using Modulo 2n+1partial Product Multiplier
Abstract
Keywords
References
Jian Zhang and Shoguo Li,”High speed parallel architecture for cyclic convolution based on FNT” IEEE Trans. Institute of micro electronics, pp. 199–204, Sept. 2009.
Lawrence M. Leibowitz,”A Simplified binary arithmetic for the fermat number transform,” IEEE Trans Acoustics, speech, and signal processing, pp. 356–359, Oct. 1976.
Ramesh C. Agarwal and Charles S. Burrus “ Fast convolution using number transforms with applications to digital filtering,” IEEE trans. Acoustics,
A. Curiger, “VLSI Architectures for Computations in Finite Rings and Fields,” PhD thesis, Swiss Federal Inst. of Technology (ETH), Zurich, 1993.
A. Tyagi,” A Reduced-Area Scheme for Carry-Select Adders,” IEEE Trans. Computers, vol. 42, no. 10, Oct. 1993.
C. Cheng, K.K. Parhi, “Hardware efficient fast DCT based on novel cyclic convolution structures”, IEEE Trans. Signal processing, 2006, 54(11), pp. 4419-4434.
H.C. Chen, J.I. Guo, T.S Chang, et al., “A memory efficient realization of cyclic convolution and its application to discrete cosine transform”, IEEE Trans.Circuit and system for video technology, 2005,15(3), pp. 445-453.
J. M. Pollard, “The fast Fourier transform in a finite field,” Math. Compul. vol. 25, pp. 365-374, Apr. 1971.
V. Paliouras and T. Stouraitis, “Novel High-Radix Residue Number System Multipliers and Adders,” IEEE Int'l Symp. Circuits and Systems VLSI (ISCAS '99), pp. 451-454, 1999.
R.P. Brent and H.T. Kung, “A Regular Layout for Parallel Adders,” IEEE Trans. Computers, vol. 31, no. 3, pp. 260-264, Mar. 1982.
Soudris, D.; Paliouras, V.; Stouraitis, T.; Skavantzos, A.; Goutis, C” system design of full adder-based architectures for convolution,” IEEE Trans.Acoustics,speech, and signal processing, vol. 1,ICASSP-93.pp. 389-392,1993.
Arambepola. B “VLSI circuit architectures for Fermat number arithmetic in DSP applications” signal processing applications of finite field mathematics, IEE colloquium, pp. 5/1-5/7,1989.
Mark E. Dodge ; Eugene S. McVey ; IBM, Manassas, Va. ”A microcode implementation of a fermat number transform for fast digital convolution”, IEEE Conference on, decision and control including the symposium on adaptive processes, vol. 19, pp.1235-1241,April 1980.
Truong, T.K. ; Reed, I.S. ; Yeh, C.-S. ; Shao, H.M.” A parallel architecture for digital filtering using fermat number ransforms”, IEEE Trans. Computers, vol. C-32,pp. 874-877,21 Aug 2006.
Nussbaumer, H.J.; Compagie IBM France, centre d’Etude et Recherches 06610 La Gaude, France ”Complex convolutions via fermat number transforms,” IBM Journal of Research and development, vol. 20, pp. 282-284, 6 April 2010.
C. Efstathiou, H. Vergos, G. Dimitrakopoulos, et al., “Efficient diminished-1 modulo 2n + 1 multipliers”, IEEE Trans. Computers, 2005, 54(4), pp. 491-496.
M. Nagamatsu, S. Tanaka, J. Mori, et. al. “15-ns 32 ×32-b CMOS multiplier with an improved parallel structure”, IEEE Journal of Solid-State Circuits, 1990,25(2), pp. 494-497.
T. Toivonen, J. Heikkila, “Video filtering with fermat number theoretic transforms using residue number system”, IEEE Trans. circuits and systems for video technology, 2006, 16(1), pp. 92-101.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.