Mathematical Modeling of Intrinsic Raman Spectroscopy for Biological Applications
Abstract
Intrinsic Raman spectroscopy (IRS) is a technique to correct turbidity-induced Raman spectral distortions, resulting in the intrinsic Raman spectrum that would be observed in the absence of scattering and absorption. In this paper, we develop a closed form expression relating the observed and intrinsic Raman spectra through diffuse reflectance using a numerical technique. Also, we study the dependence of this expression on sample size and elastic scattering anisotropy. We compare the behavior at various turbidities, at various collection spot radii, for different sample sizes and for various values of elastic scattering anisotropy () to get best fitting with minimum error and to have an accurate relation between observed and intrinsic Raman spectra.
Keywords
Full Text:
PDFReferences
J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993).
Q. G. Zhang, M. G. Muller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 2, pp. 1451-1453 (2000).
M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, pp. 4633-4646 (2001).
M. S. Patterson and B. W. Pogue, "Mathematical-model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue," Appl. Opt. 33, 1963-1974 (1994).
Wei-Chuan Shih1, Kate L. Bechtel2, and Michael S. Feld*, "Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: Theory and simulations" OPTICS EXPRESS 12726, (2008).
N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3331 (2003).
J. C. Finlay and T. H. Foster, "Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model," Appl. Opt. 44, 1917-1933 (2005).
J. Wu, F. Partovi, M. S. Field, and R. P. Rava, "Diffuse reflectance from turbid media - an analytical model of photon migration," Appl. Opt. 32, 1115-1121 (1993).
S. L. Jacques, "Diffuse reflectance from a semi-infinite medium," http://omlc.ogi.edu/news/may99/rd/index.html, (1999).
Simone Christine Eichmann, Johannes Trost, Thomas Seeger, Lars Zigan, and Alfred Leipertz "Application of linear Raman spectroscopy for the determination of acetone decomposition" June 2011 / Vol. 19, No. 12.
G. Farca1, S. I. Shopova2, and A. T. Rosenberger3 "Cavity-enhanced laser absorption spectroscopy using micro resonator whispering-gallery modes" Vol. 15, No. 25 / OPTICS EXPRESS 17443,(2007).
Wei-Chuan Shih1, Kate L. Bechtel2, and Michael S. Feld*, "Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: "Experimental applications OPTICS EXPRESS 12737, (2008).
N. N. Zhadin and R. R. Alfano, "Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: Theory and experiment," J. Biomed. Opt. 3, 998).
P. J. Aarnoutse and J. A. Westerhuis, "Quantitative Raman reaction monitoring using the solvent as internal standard," Anal. Chem. 77, 1228-1236 (2005).
S. J. Tinnemans, M. H. F. Kox, T. A. Nijhuis, T. Visser, and B. M. Weckhuysen, "Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard," Phys. Chem. Chem. Phys. 7, 211-216 (2005).
S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. Vangemert, "Optical-Properties of Intralipid - a Phantom Medium for Light-Propagation Studies," Lasers Surg. Med. 12, 510-519 (1992).
A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld,"Raman spectroscopy for noninvasive glucose measurements," J. Biomed. Opt. 10, 031114 (2005).
D. N. Waters, "Raman spectroscopy of powders - effects of light absorption and scattering," Spectrochim. Acta, Part A 50, 1833-1840 (1994).
G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006).
W.-C. Shih, K. L. Bechtel, and M. S. Feld, "Intrinsic Raman spectroscopy improves analyte concentration measurements in turbid media," in Biomedical Optics, (Optical Society of America, 2006), p. MC7.
G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637(1999).
B. C. Wilson and S. L. Jacques, "Optical reflectance and transmittance of tissues - principles and applications," IEEE J. Quantum Electron. 26, 2186-2199 (1990).
T. J. Farrell, M. S. Patterson, and B. Wilson, "a diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19,879-888 (1992).
M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36,93-104 (1997).
R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
G. L. Cote, R. M. Lec, and M. V. Pishko, "Emerging biomedical sensing technologies and their applications," IEEE Sens. J. 3, 251-266 (2003).
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.