

Comparative Study and Analysis of Audit Data Using Data Mining Tools
Abstract
Keywords
References
Alm, J., (1999). “Tax Compliance and Administration,In Handbook on Taxation; eds. Hildreth, W. B.,Richardson, J. A.,pp. 741-768. Marcel Dekker, Inc.
Mitchell, T. (1997), Machine Learning, McGraw Hill.
Aha, D., Kibler, D., Albert, M., 1991. Stancebased Learning algorithms. Machine Learning vol. 6, 37-66
Quinlan, J. R. (1993), C4.5: Programs for machine learning, Morgan Kaufmann, San Francisco
Witten I. & Frank E., Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, San Mateo, 2000.
Micci-Barreca Daniele, Ramachandran Satheesh. (2006) Analytics Elite. Improving Tax Administration with Data Mining., http://www.spss.com
Murray, Mathew N. (1995) Sales Tax Compliance and Audit Selection. National Tax Journal. 48, (4), 515-30.
Cecil, Wayne H. (1998) Assuring Individual Taxpayer Compliance: Audit rates, Selection Methods, and Electronic Auditing. The CPA Journal, 68, (12), available at http://www.nysscpa.org/cpajournal/ 1998/ 1198/ Departments/D661198.html, last accessed 27 Sep 2007.
Asimov D. The grand tour: a tool for viewing multidimensional data. SIAM J Sci Statist Comput 1985; 6:128–43.
Fayyad U, Piatetsky-Shapiro G, Smyth P, et al, editors. Advances in knowledge discovery and data mining.Menlo Park (CA): AAAI Press; 1996.
Michalski RS, Kaufman K. Learning patterns in noisy data: the AQ approach. In: Paliouras G, Karkaletsis V,Spyropoulos C, editors. Machine learning and its applications. Berlin: Springer-Verlag; 2001. p. 22–38.
Micci-Barreca Daniele, Ramachandran Satheesh.(2006) Analytics Elite. Predictive Tax Compliance Management. http://www.spss.com.
Ian H. Witten, Eibe Frank, Len Trigg, Mark Hall, Geoffrey Holmes, Sally Jo Cunningham, “Weka: Practical Machine Learning Tools and Techniques with Java Implementations”.
Jiawei Han and Micheline Kamber (2001). Data Mining: concepts and techniques. Academic Press, San Diego, California.
TANAGRA http://www.TANAGRA.com/
Wang, Y., Witten, I., 1997, Induction of model trees for predictingcontinuous classes, In Proc. of the Poster Papers of the EuropeanConference on ML, Prague, 128–137.
Ricco RAKOTOMALALA, "TANAGRA: a free software for research and academic purposes", in Proceedings of EGC'2005, RNTI-E-3, vol. 2, pp.697-702, 2005. (in French)
Weka 3: Data Mining Software in Java http:// www.cs.waikato.ac.nz/ml/weka/.
Tanagra - A free data mining software for teaching andresearch.http://eric.univ-lyon2.fr/_ricco/tanag ram/ en/tanagra/.
Tulai, A., Oppacher, F., 2004. Maintaining Diversity and Increasing the Accuracy the Accuracy of Classification Rules through Automatic Speciation. Congress of Evolutionary Computation, Portland, USA, 2241-2248
Watts, R. L., and J. L. Zimmerman, 1986, Positive Accounting Theory.Prentice-Hall.
Seewald, A. K., Furnkranz, J., 2001. An evaluation of grading classifiers. In Advances in Intelligent Data Analysis: Proceedings of the Fourth International Symposium (IDA-01), pages 221–232, Berlin, Springer.
Murthy, S. (1998), “Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey”, Data Mining and Knowledge Discovery, Vol. 2, pp. 345–389.
Albrecht, C.C., Albrecht, W.S. and Dunn, J.G. (2001), “Can auditors detect fraud: a review of the research evidence”, Journal of Forensic Accounting, Vol. 2 No. 1, pp. 1-12.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.