Open Access Open Access  Restricted Access Subscription or Fee Access

Signal Parameter Estimation from Intercepted and Recorded Radar Signal Data

Ch. Raja, M. Madhavi Latha, E.G. Rajan


Electronic Intelligence (ELINT) provides not only direction of arrival of intercepted signals but also provides immediate warning of threat radars, including surveillance, fire control, targeting and missile guidance systems. Radar signals from across the borders are intercepted by an ELINT receiver, recorded on a magnetic tape and are analyzed by an associated signal processing system to give a wide range of parameters, including direction, type of radar, frequency, frequency agility, Pulse Repetition Frequency (PRF), and PRF type, Scan type, Scan time and Intra pulse modulation details. These parameters are sufficient to characterize the type of emitter, and complete identification is then carried out by comparing the analyzed signal with parameters of hostile and friendly emitter characteristics stored in a library within the computer memory. Analysis of the signals and warning of a threat is virtually instantaneous and enables countermeasures of jamming and/or decoys to be initiated.


Electronic Support Measures, ECM, Radar Signal Parameter Estimation.

Full Text:



S. Sen., M. Hurtado, and A. Nehorai, ―Adaptive OFDM radar for detecting a moving target in urban scenarios,‖ in Proc. Int. Waveform Diversity Design (WDD) Conf., Orlando, FL, Feb. 8–13, 2009, pp. 268–272.

S. Sen and A. Nehorai, ―Adaptive OFDM radar for target detection in multipath scenarios,‖ IEEE Trans. Signal Process. vol. 59, no. 1, pp. 78–90, Jan. 2011.

J. Durek, Multipath Exploitation Radar Industry Day. Herndon, VA: DARPA, Aug. 17, 2009 [Online]. Available: Solicitations/BAA09-01/presentations/MER_Industry_Day.pdf

J. L. Krolik, J. Farrell, and A. Steinhardt, ―Exploiting multipath propagation for GMTI in urban environments,‖ in Proc. IEEE Conf. Radar, 2006, pp. 65–68.

D. K. Barton, ―Low-angle radar tracking,‖ Proc. IEEE, vol. 62, no. 6, pp. 687–704, Jun. 1974.

W. D. White, ―Low-angle radar tracking in the presence of multipath,‖ IEEE Trans. Aerosp. Electron. Syst., vol. AES-10, no. 6, pp. 835–852, Nov. 1974.

A. V. Mrstik and P. G. Smith, ―Multipath limitations on low-angle radar tracking,‖ IEEE Trans. Aerosp. Electron. Syst.,vol. AES-14, no.1, pp. 85–102, Jan. 1978.

Y. Bar-Shalom, A. Kumar, W. D. Blair, and G. W. Groves, ―Tracking low elevation targets in the presence of multipath propagation,‖ IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 3, pp. 973–979, Jul. 1994.

J. K. Jao, ―A matched array beam forming technique for low angle radar tracking in multipath,‖ in Proc. IEEE Nat. Radar Conf., Atlanta, GA, Mar. 29–31, 1994, pp. 171–176.

M.Papazoglou andJ. L. Krolik, ―Electromagnetic matched-field processing for target height finding with over-the-horizon radar,‖ in Proc.IEEE Int. Conf. Acoustics, Speech, Signal Process. (ICASSP),Munich,Germany, Apr. 21–24, 1997, vol. 1, pp. 559–562.

H. Tajima, S. Fukushima, and H. Yokoyama, ―A consideration of multipath detection in navigation systems,‖ Electron. Commun. Jpn. (PartI: Commun.), vol. 85, no. 11, pp. 52–59, May 2002.

R. J. Urick, Principles of Underwater Sound for Engineers. NewYork: McGraw-Hill, 1967.

R. Moose and T. Dailey, ―Adaptive underwater target tracking usingpassive multipath time-delay measurements,‖ IEEE Trans. Acoust.,Speech, Signal Process., vol. 33, no. 4, pp. 778–787, Aug. 1985.

A. Pandharipande, ―Principles of OFDM,‖ IEEE Potentials, vol. 21, no.2, pp. 16–19, Apr. 2002.

A. F. Molisch, Wideband Wireless Digital Communications. UpperSaddle River, NJ: Prentice-Hall PTR, 2001.

B. L. Floch, R. Halbert-Lassalle, and D. Castelain, ―Digital sound broadcasting to mobile receivers,‖ IEEE Trans. Consum. Electron.,vol. 35, no. 3, pp. 493–503, Aug. 1989.

G. E. A. Franken, H. Nikookar, and P. V. Genderen, ―Doppler toleranceof OFDM-coded radar signals,‖ in Proc. Eur. Radar Conf., Manchester,U.K., Sep. 13–15, 2006, pp. 108–111.

D. S. Garmatyuk, ―Simulated imaging performance of UWB SARbased on OFDM,‖ in Proc. IEEE Int. Conf. Ultra-Wideband, Sep.2006, pp. 237–242.

J.P.Stralka,―Applications of orthogonal frequency-division multiplexing(OFDM) to radar,‖ Ph.D. dissertation, The Johns HopkinsUniv., Baltimore, MD, Mar. 2008.

S. S. Chen, D. L. Donoho, and M. A. Saunders, ―Atomic decompositionby basis pursuit,‖ SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, Aug.1998.

D. Malioutov, M. Çetin, and A. S. Willsky, ―A sparse signal reconstructionperspective for source localization with sensor arrays,‖ IEEETrans. Signal Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

R. Tibshirani, ―Regression shrinkage and selection via the lasso,‖ J. R.Stat. Soc. B, Methodol., vol. 58, no. 1, pp. 267–288, 1996.

G. Tang and A. Nehorai, ―The _ -constrained minimal singular value:A computable quantification of the stability of sparse signal reconstruction,‖IEEE Trans. Inf. Theory Apr. 2010 [Online]. Available:, submitted for publication

E. J. Candès and T. Tao, ―Decoding by linear programming,‖ IEEETrans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.[26] E. J. Candès, ―The restricted isometry property and its implications forcompressed sensing,‖ Comptes. Rendus. Mathematique, vol.346, no.9–10, pp. 589–592, May 2008.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,1st ed. New York: Wiley, Jun. 2001.

C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, EvolutionaryAlgorithms for Solving Multi-Objective Problems, 2nd ed. NewYork:Springer, 2007.

E. Zitzler, M. Laumanns, and S. Bleuler, ―A tutorial on evolutionary multiobjective optimization,‖ in Metaheuristics for Multiobjective Optimisation, ser. Lecture Notes in Economics and Mathematical Systems,X. Gandibleux, M. Sevaux, K. Sörensen, and V. T‘kindt, Eds.Berlin, Germany: Springer, 2004, vol. 535, pp. 3–37.

R. T. Marler and J. S. Arora, ―Survey of multi-objective optimization methods for engineering,‖ Structural Multidisciplin. Optim., vol. 26,no. 6, pp. 369–395, Mar. 2004.

P. C. Mahalanobis, ―On the generalized distance in statistics,‖ in Proc.Nat. Inst. Sci. India, 1936, vol. 2, pp. 49–55.

T. W. Anderson, An Introduction to Multivariate Statistical Analysis,3rd ed. Hoboken, NJ: Wiley, 2003.

F. Y. Edgeworth, Mathematical Physics: An Essay on the Application of Mathematics to the Moral Sciences. London, U.K.: C. K. Paul,1881.

V. Pareto, Cours D‘Economie Politique, Volume I and II. Lausanne, Switzerland: F. Rouge, 1896.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ―A fast and elitist multiobjective genetic algorithm: NSGA-II,‖ IEEE Trans. Evol.Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

J. W. Enslin, ―An evolutionary algorithm approach to simultaneous multi mission radar waveform design,‖ Master‘s thesis, Rochester Inst.of Technology, Rochester, NY, Aug. 2007.

S. Mittal and K. Deb, ―Three-dimensional off line path planning forUAVs using multi objective evolutionary algorithms,‖ in Proc. IEEECongr. Evol. Comput. (CEC), Singapore, Sep. 25–28, 2007, pp.3195–3202.

B. R. Secrest and G. B. Lamont, ―Multi objective tuning of a multi target tracking algorithm using an evolutionary algorithm,‖ in Proc. IEEE Symp. Computational Intelligence in Multi-Criteria Decision-Making (MCDM), Nashville, TN, Mar. 30–Apr. 2, 2009, pp. 51–57.

V. Baghel, G. Panda, P. Srihari, K. Rajarajeswari, and B. Majhi, ―An efficient multi-objective pulse radar compression technique using RBF and NSGA-II,‖ in Proc. World Congr. Nature Biologically Inspired Computing (NaBIC), Coimbatore, India, Dec. 9–11, 2009,pp. 1291–1296.

V. Baghel, ―Multiobjective Optimization—New formulation and application to radar signal processing,‖ Master‘s thesis, National Inst. ofTechnology, Rourkela, India, 2009.

G.Visick, ―A quantitative version of the observation that the Hadamard product is a principal sub matrix of the Kronecker product,‖ Linear Algebra Appl., vol. 304, no. 1–3, pp. 45–68, Jan. 2000.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.