Open Access Open Access  Restricted Access Subscription or Fee Access

Fixed Width Booth Multiplier based on PEB Circuit

Dr.V. Vidya Devi, Dr.L.C. Siddanna Gowd, A. Natarajan, GuruKumar Lokku

Abstract


A probabilistic estimation bias (PEB) circuit for a
fixed-width two’s complement Booth multiplier is proposed for Low Power and High accuracy. The proposed PEB circuit is derived from theoretical computation, instead of exhaustive simulations and heuristic compensation strategies that tend to introduce curve-fitting errors(interpolation) and exponential-grown simulation time. Consequently, the proposed PEB circuit provides a smaller area and a
lower truncation error compared with existing works such as posttruncation and pre- truncation methodologies in Booth Multiplication. Implemented in an 8 × 8 2-D discrete cosine transform (DCT) core, the DCT core using the proposed PEB Booth multiplier improves the
peak signal-to-noise ratio by 17 dB with only a 2% area penalty compared with the direct-truncated method. This PEB circuit also provides extensive applications in digital designs. PEB circuit are more easier to design and can achieve good simulation time in doing computations in higher order bits.


Keywords


Discrete Cosine Transform (DCT), Estimation Theory, Fixed-Width Booth Multiplier, Probabilistic Analysis.

Full Text:

PDF

References


J. P. Wang, S. R. Kuang, and S. C. Liang, “High-accuracy fixedwidth

modified Booth multipliers for lossy applications,” IEEE Trans.Very

Large Scale Integr. (VLSI) Syst., vol. 19, no. 1, pp. 52–60, Jan. 2011.

M. J. Schulte and E. E. Swartzlander, Jr., “Truncated multiplication with

correction constant,” in VLSI Symp. Tech. Dig., 1993, pp. 388–396.

S. S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient

multipliers for digital signal processing applications,” IEEE Trans.

Circuits Syst. II,Analog Digit. Signal Process, vol. 43, no. 2, pp. 90–95,

Feb. 1996.

J. M. Jou, S. R. Kuang, and R. D. Chen, “Design of lower-error

fixedwidth multipliers for DSP applications,” IEEE Trans. Circuits Syst.

II,Analog Digit. Signal Process, vol. 46, no. 6, pp. 836–842, Jun. 1999.

L. D. Van, S. S. Wang, and W. S. Feng, “Design of the lower-error

fixedwidth multiplier and its application,” IEEE Trans. Circuits Syst. II,

Analog Digit. Signal Process, vol. 47, no. 10, pp. 1112–1118, Oct. 2000.

L. D. Van and C. C. Yang, “Generalized low-error area-efficient

fixedwidth multipliers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.

,no. 8, pp. 1608–1619, Aug. 2005.

Y. C. Liao, H. C. Chang, and C. W. Liu, “Carry estimation for two’s

complement fixed-width multipliers,” in Proc. IEEE Workshop on

SignalProcess. Syst. Design Implementation, 2006, pp. 345–350.

N. Petra, D. D. Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo,

“Truncated binary multipliers with variable correction and minimum

mean square error,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57,

no. 6, pp. 1312–1325, Jun. 2010.

S. J. Jou, M. H. Tsai, and Y. L. Tsao, “Low-error reduced-width Booth

multipliers for DSP applications,” IEEE Trans. Circuits Syst. I, Fundam.

Theory Appl., vol. 50, no. 11, pp. 1470–1474, Nov. 2003.

K. J. Cho, K. C. Lee, J. G. Chung, and K. K. Parhi, “Design of low-error

fixed-width modified Booth multiplier,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 12, no. 5, pp. 522–531, May 2004.

T. B. Juang and S. F. Hsiao, “Low-error carry-free fixed-width

multipliers with low-cost compensation circuits,” IEEE Trans. Circuits

Syst. II, Exp.Briefs, vol. 52, no. 6, pp. 299–303, Jun. 2005.

K. K. Parhi, J. G. Chung, K. C. Lee, and K. J. Cho, “Low-error fixedwidth

modified Booth multiplier,” U.S. Patent 7 334 200, Feb. 19, 2008.

H. A. Huang, Y. C. Liao, and H. C. Chang, “A self-compensation

fixedwidth Booth multiplier and its 128-point FFT applications,” in

Proc. IEEE ISCAS, 2006, pp. 3538–3541.

M. A. Song, L. D. Van, and S. Y. Kuo, “Adaptive low-error fixed-width

Booth multipliers,” IEICE Trans. Fundam., vol. E90-A, no. 6, pp. 1180–

, Jun. 2007.

Y. C. Lim, “Single-precision multiplier with reduced circuit complexity

for signal processing applications,” IEEE Trans. Comput., vol. 41, no.

, pp. 1333–1336, Oct. 1992

B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs..

Oxford, U.K.: Oxford Univ. Press, 2000.

S. C. Hsia and S. H. Wang, “Shift-register-based data transposition for

cost-effective discrete cosine transform,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 15, no. 6, pp. 725–728, Jun. 2007.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.