Open Access Open Access  Restricted Access Subscription or Fee Access

Design Optimization Methodology for CMOS Operational Amplifier Using NSGAII

M. Shanthi, Dr. M. C. Bhuvaneshwari

Abstract


This paper focuses on the synthesis and design of CMOS operational amplifiers (op amps) using novel multi objective algorithm. The synthesis of CMOS op-amps can be translated into a multiple-objective optimization task, in which a large number of specifications have to be taken intoaccount, i.e., area, power consumption, slew rate and gain-bandwidth. A multi-objective algorithm called elitist non-dominated orting genetic algorithm (NSGA-II) is applied to search for multiple optimal solutions, which includes transistor sizes, bias currents and compensating capacitance values. The knowledge of this helps the designer to compare and choose a compromised optimal solution for automating the operational amplifier design. The proposed methodology has the ability to generate in short times constraint satisfying solutions The algorithm is implemented in C programming language and PSICE is used to evaluate the required circuit parameters The simulation results confirms the efficiency of the NSGA-II algorithm in determining the device sizes.


Keywords


Analog Circuit Synthesis, Transistor Sizing, Design Automation, PSPICE, Multi Objective Genetic Algorithm, Miller OTA

Full Text:

PDF

References


L. R. Carley, G. Gielen, R. A. Rutenbar, and W. Sansen. “Synthesis Tools for Mixed-Signal ICs: Progress on Frontend and Backend Strategies”. In Proceedings of DAC, pages 298–303, Jun. 1996.

C.A.C. Coello, .A Comprehensive Survey of Evolutionary Multiobjective Optimisation Techniques,. Knowledge and Information Systems, An International Journal, IEEE Service Centre vol.1, no.3, pp. 269-308, 1999

M. Degrauwe, O. Nys, and E. Dijkstra. “IDAC: An Interactive Design Tool for Analog CMOS circuits”. In IEEE Journal of Solid-State Circuits, volume 22, pages 1106–16, Dec. 1987.

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan .A Fast and Elitist Mutli-Objective Genetic Algorithm:

NSGA-II,. KanGAL Indian Institute of Technology Kanpur, India,

R. Harjani, R. Rutenbar, and L. Carley. “OASYS: A Framework for Analog Circuit Synthesis”. In IEEE Transactions on CAD, volume 8,pages 1247–1266, Dec. 1989.

J. Harvey, M. Elmasry, and B. Leung. “STAIC: An Interactive Framework for Synthesizing CMOS and BiCMOS Analog Circuits”. In IEEE Transactions on CAD, volume 11, pages 1402–1415, Nov. 1992.

M. Hershenson, S. Boyd, and T. H. Lee. “GPCAD: A tool for CMOS Op-amp Synthesis”. In Proc. IEEE/ACM Int. Conf. Computer Aided Design, pages 296–303, Nov. 1998.

H. Koh, C. Seqin, and P. Gray. “OPASYN: A Compiler for CMOS Operational Amplifiers”. In IEEE Transactions on CAD, volume 9,pages 113–125, Feb. 1990.

M. Krasnicki, R. Phelps, R. Rutenbar, and L. R. Carley. “MAELSTROM: Efficient Simulation-Based Synthesis for Custom Analog Cells”. In ACM/IEEE Design Automation Conference, pages 951– 957, Jun. 1999

K.R. Laker, W. Sansen, Design of Analog Integrated Circuits and Systems, Mc. Graw-Hill, 1994.

W. Nye, D. Riley, A. Sangiovanni-Vicentelli, and A. Tits. “DELIGHT SPICE: An Optimization-Based System for the Design of Integrated Circuits”. In IEEE Transactions on CAD, volume 7, pages 501–519, Apr. 1988.

E. S. Ochotta, R. A. Rutenbar, and L. R. Carley. “Synthesis of High-Performance Analog Circuits in ASTRX/OBLX”. In IEEE Transactionson CAD, volume 15, pages 273–294, Mar. 1996

Kruiskamp, W. & Leenaerts, D. DARWIN: CMOS opamp Synthesis by means of a genetic algorithm. 32nd ACM/IEEE Design Automation Conference. (1995).

Mandal, P. & Visvanathan, V. CMOS Op-Amp sizing using a geometric programming formulation. IEEE Transactions on Computer-Aided Design of Integrated circuits and systems, vol. 20(1), pp.22-38. (2001).

Baker, R.J. & Li, H.W. & Boyce, D. CMOS circuit design, layout and simulation, New York: IEEE Press. (1998).


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.