Open Access Open Access  Restricted Access Subscription or Fee Access

The Steiner Distance Dimension of Graphs

J. Ibrahim, Z. Aliyaaz


The Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all require an optimal interconnect for a given set of objects and a predefined objective function. One well-known variant, which is often used synonymously with the term Steiner tree problem, is the Steiner tree problem in graphs. Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals, the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals (but may include additional vertices). Further well-known variants are the Euclidean Steiner tree problem and the rectilinear minimum Steiner tree problem. The Steiner tree problem in graphs can be seen as a generalization of two other famous combinatorial optimization problems: the (non-negative) shortest path problem and the minimum spanning tree problem. If a Steiner tree problem in graphs contains exactly two terminals, it reduces to finding the shortest path. If, on the other hand, all vertices are terminals, the Steiner tree problem in graphs is equivalent to the minimum spanning tree. However, while both the non-negative shortest path and the minimum spanning tree problem are solvable in polynomial time, the decision variant of the Steiner tree problem in graphs is NP-complete (which implies that the optimization variant is NP-hard); in fact, the decision variant was among Karp's original 21 NP-complete problems. The Steiner tree problem in graphs has applications in circuit layout or network design. However, practical applications usually require variations, giving rise to a multitude of Steiner tree problem variants.


Steiner Graph. Wheel Graph, Complete Graph, Steiner Evaluation.

Full Text:



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.