

Intrusion Detection System with Dynamic Training Model
Abstract
Keywords
References
N. Ye, S. Emran, X. Li, and Q. Chen, ―Statistical process control for computer intrusion detection,‖ in Proc. DISCEX II, Jun. 2001, vol. 1, pp. 3–14.
N. Ye, S. Vilbert, and Q. Chen, ―Computer intrusion detection through EWMA for auto correlated and uncorrelated data,‖ IEEE Trans. Rel., vol. 52, no. 1, pp. 75–82, Mar. 2003.
N. Ye, S. Emran, Q. Chen, and S. Vilbert, ―Multivariate statistical analysis of audit trails for host-based intrusion detection,‖ IEEE Trans. Comput., vol. 51, no. 7, pp. 810–820, Jul. 2002.
D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N.Wu, ―ADAM: Detecting intrusions by data mining,‖ in Proc. IEEE Workshop Inf. Assurance and Security, Jun. 2001, pp. 11–16.
L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar, and P. Dokas, The MINDS—Minnesota Intrusion Detection System: Next Generation Data Mining. Cambridge, MA: MIT Press, 2004.
K. Julish, ―Data mining for intrusion detection: A critical review,‖ IBM, Kluwer, Boston, MA, Res. Rep. RZ 3398, Feb. 2002. No. 93450.
I. Dubrawsky and R. Saville, SAFE: IDS Deployment, Tuning, and Logging in Depth, CISCO SAFE White Paper.
W. Lee, S. Stolfo, and P. Chan, ―Real time data mining-based intrusion detection,‖ in Proc. DISCEX II, Jun. 2001, pp. 89–100.
E. Eskin, M. Miller, Z. Zhong, G. Yi, W. Lee, and S. Stolfo, ―Adaptive model generation for intrusion detection systems,‖ in Proc. 7th ACM Conf. Comput. Security Workshop Intrusion Detection and Prevention, Nov. 2000
A. Honig, A. Howard, E. Eskin, and S. Stolfo, ―Adaptive model generation: An architecture for the deployment of data mining-based intrusion detection systems,‖ in Data Mining for Security Applications. Norwell, MA: Kluwer, 2002.
M. Hossian and S. Bridges, ―A framework for an adaptive intrusion detection system with data mining,‖ in Proc. 13th Annu. CITSS, Jun. 2001.
W. Lee and S. Stolfo, ―A framework for constructing features and models for intrusion detection systems,‖ ACMTrans. Inf. Syst. Secur., vol. 3, no. 4, pp. 227–261, Nov. 2000.
G. Giacinto, F. Roli, and L. Didaci, ―A modular multiple classifier system for the detection of intrusions in computer networks,‖ in Proc. 4th Int.Workshop MCS, Jun. 2003, pp. 346–355.
M. Sabhnani and G. Serpen, ―Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context,‖ in Proc. Int. Conf. Mach. Learn.: Models, Technol. and Appl., Jun. 2003, pp. 209–215.
V. Kumar, ―Data mining for network intrusion detection: Experience with KDDCup’99 data set,‖ presented at the Presentation Workshop Netw. Intrusion Detection, Aberdeen, MD, Mar. 2002.
R. Agarwal and M. Joshi, ―PNrule: A new framework for learning classifier models in data mining (a case-study in network intrusion detection),‖ in Proc. 1st SIAM Conf. Data Mining, Apr. 2001. [Online]. Available: http://www.siam.org/meetings/sdm01/pdf/sdm01_30.pdf
B. Pfahringer, ―Winning the KDD99 classification cup: Bagged boosting,‖ ACM SIGKDD Explor., vol. 1, no. 2, pp. 65–66, 1999.
I. Levin, ―KDD-99 classifier learning contest LLSoft’s results overview,‖ ACM SIGKDD Explor., vol. 1, no. 2, pp. 67–75, 1999.
Z. Yu and J. Tsai, ―A multi-class SLIPPER system for intrusion detection,‖ in Proc. 28th IEEE Annu. Int. COMPSAC, Sep. 2004, pp. 212–217.
W. Cohen and Y. Singer, ―A simple, fast, and effective rule learner,‖ in Proc. Annu. Conf. Amer. Assoc. Artif. Intell., 1999, pp. 335–342.
S. Robert and S. Yoram, ―Improved boosting algorithms using confidencerated predictions,‖ Mach. Learn., vol. 37, no. 3, pp. 297–336, Dec. 1999.
C. Elkan, ―Results of the KDD’99 classifier learning,‖ SIGKDD Explor.,ACM SIGKDD, vol. 1, no. 2, pp. 63–64, Jan. 2000.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.