![Open Access](https://ciitresearch.org/dl/lib/pkp/templates/images/icons/fulltext_open_medium.gif)
![Restricted Access](https://ciitresearch.org/dl/lib/pkp/templates/images/icons/fulltext_restricted_medium.gif)
Detecting and Counting Pedestrians in a Crowded Environment Using ROI Mask in a Video
Abstract
Keywords
References
Junping Zhang, Ben Tan, Fei Sha, and Li He, “Predicting Pedestrian Counts in Crowded Scenes With Rich and High-Dimensional Features” IEEE Trans. Intell. Transp. Syst., vol. pp, issue 99, pp.1-10, April 2011.
G. L. Hamza Lup, K. A. Hua, M. Le, and R. Peng, “Dynamic plan generation and real-time management techniques for traffic evacuation,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 4, pp. 615–624, Dec. 2008.
J. Zhang, F. Y. Wang, K. Wang, W. H. Lin, X. Xu, and C. Chen, “Data-driven intelligent transportation systems: A survey,” IEEE Trans. Intell. Transp. Syst , 2011, to be published.
P.Viola, M.Jones, and D.Snow, “Detecting Pedestrians using patterns of mption and appearance,”, IJCV, Vol.63(2), pp. 153-61, 2005.
Y. C. Chiu and P. B. Mirchandani, “Online behavior-robust feedback information routing strategy for mass evacuation,” IEEE Trans. Intell. Transp. Syst , vol. 9, no. 2, pp. 264–274, Jun. 2008.
C. Norris, M. McCahill, and D. Wood, “Editorial. The growth of CCTV: A global perspective on the international diffusion of video surveillance in publicly accessible space,” Surveillance Soc. CCTV Special, vol.2, no. 2/3, pp. 110–135, 2004.
B. Leibe, E. Seemann, and B. Schiele, “Pedestrian detection in crowded scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog , 2005, pp. 878–885.
B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors,” in Proc. IEEE Conf. Comput. Vis., 2005, pp. 90–97.
A. C. Davies, J. H. Yin, and S. A. Velastin, “Crowd monitoring using image processing,” Electron. Commun. Eng. J. , vol. 7, no. 1, pp. 37–47, Feb. 1995.
R. Ma, L. Li, W. Huang, and Q. Tian, “On pixel count based crowd density estimation for visual surveillance,” in Proc. IEEE Conf. Cybern. Intell. Syst., 2004, pp. 170–173.
A. B. Chan, Z. J. Liang, and N. Vasconcelos, “Privacy preserving crowd monitoring: Counting people without people models or tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog. , Anchorage, AK, 2008, pp. 1–7.
A. N. Marana, L. F. Costa, R. A. Lotufo, and S. A. Velastin, “Estimating crowd density with Minkowski fractal dimension,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, 1999, pp. 3521–3524.
L. Dong, V. Parameswaran, V. Ramesh, and I. Zoghlami, “Fast crowd segmentation using shape indexing,” in Proc. IEEE Int. Conf. Comput. Vis., 2007, pp. 1–8.
K. Terada, D. Yoshida, S. Oe, and J. Yamaguchi, “A method of counting the passing people by using the stereo images,”Proceedings of the International Conference on Image Processing, 1999. ICIP 99., vol. 2, pp. 338–342 vol.2, 1999.
S. Velipasalar, Y.-L. Tian, and A. Hampapur, “Automatic counting of interacting people by using a single uncalibrated camera,” IEEE International Conference on Multimedia and Expo, 2006, pp. 1265–1268, July 2006.
T. Zhao and R. Nevatia, “Bayesian human segmentation in crowded situations,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003., vol. 2, pp. II–459–66 vol.2, June 2003.
T. Zhao and R. Nevatia, “Tracking multiple humans in crowded environment,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004., vol. 2, pp. II–406–II–413 Vol.2, June-2 July 2004.
V. Rabaud and S. Belongie, “Counting crowded moving objects,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, vol. 1, pp. 705–711, June 2006.
D. Kong, D. Gray, and H. Tao, “Counting pedestrians in crowds using viewpoint invariant training,” in 18th International Conference on Pattern Recognition, ICPR, pp. 1187– 1190, 2006.
P. Kilambi, E. Ribnick, A. J. Joshi, O. Masoud, and N. Papanikolopoulos, “Estimating pedestrian counts in groups,” Computer Vision and Image Understanding, vol. 110, no. 1, pp. 43 – 59, 2008.
Z. Kim, “Real time object tracking based on dynamic feature grouping with background subtraction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Los Alamitos, CA, 2008, pp. 1–8.
A. N. Marana, L. F. Costla, R. A. Lotufo, and S. A. Velastin, “on the efficacy of texture analysis for crowd monitoring,” in proc. IEEE Intl. symp. comput. Graph., Image Process., vis1998, pp.354-361.
Refbacks
- There are currently no refbacks.
![Creative Commons License](http://i.creativecommons.org/l/by/3.0/80x15.png)
This work is licensed under a Creative Commons Attribution 3.0 License.